A NOTE ON MODULE HOMOMORPHISMS

John Koker
University of Wisconsin - Oshkosh

During a recent course in ring theory, I asked a student of mine to find examples of a ring and modules to show that the two conditions for a function to be a module homomorphism are independent of each other. Let R be a (not necessarily commutative) ring and M and N be left R-modules. A function $f: M \rightarrow N$ is said to be an R-module homomorphism if
(1) $f(x+y)=f(x)+f(y)$ for all $x, y \in M$ and
(2) $f(r x)=r f(x)$ for all $x \in M, r \in R$.

Let R be a noncommutative ring and fix $r \in R$ with r not in the center of R. Then $f: R \rightarrow R$ defined by $f(s)=r s$ is a function from the left R-module R to itself which satisfies condition (1). However, due to the noncommutativity, there exists $s, t \in R$ such that $f(t s)=r t s \neq t r s=t f(s)$. Thus (2) fails.

Likewise, we can find an example to satisfy (2) but not (1). Let $R=\mathbb{Z}_{2}$ and let $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Define $f: M \rightarrow M$ by $f(0,0)=(0,0)$ and $f(x, y)=(1,1)$ if $(x, y) \neq(0,0)$. It is straight forward to check that (2) is satisfied. But $f[(1,0)+(0,1)]=f(1,1)=(1,1) \neq$ $f(1,0)+f(0,1)$. Hence, (1) fails.

One question this note addresses is when does (2) imply (1)? The converse is more interesting if (2) implies (1), what can be said about M ? Recall that M is a cyclic left R-module if there exists $x \in M$ with $R x=M$.

Lemma 1. Suppose that R is a ring and N is any left R-module. If M is a cyclic left R-module and $f: M \rightarrow N$ is a function which satisfies (2), then f satisfies (1).

Proof. Choose $x \in M$ with $M=R x$. Let $x_{1}, x_{2} \in M$. Then there exists $r_{1}, r_{2} \in R$ with $x_{1}=r_{1} x$ and $x_{2}=r_{2} x$. Thus, $f\left(x_{1}+x_{2}\right)=f\left(r_{1} x+r_{2} x\right)=f\left[\left(r_{1}+r_{2}\right) x\right]=\left(r_{1}+r_{2}\right) f(x)=$ $r_{1} f(x)+r_{2} f(x)=f\left(r_{1} x\right)+f\left(r_{2} x\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$.

Thus, M being cyclic is a sufficient condition for (2) to imply (1). We now exhibit necessary conditions on M. In other words, if $f: M \rightarrow N$ is a function in which (2) implies (1), what can be said about M ?

Suppose that F is a field and V is a vector space over F. The definition of a linear transformation from V to V is the same as for module homomorphisms. Finding examples

