SIXES AND SEVENS

Carl Pomerance
University of Georgia

Cooper and Kennedy [1] have posed the following interesting question. For $n=0,1, \ldots$, let $a_{n} \in\{6,7\}$ be such that the base 10 number $a_{n-1} a_{n-2} \ldots a_{0}$ is divisible by 2^{n}. It is clear that this condition defines the sequence $\left\{a_{n}\right\}$. The first five terms are $6,7,7,7,6$. Cooper and Kennedy ask if $\left\{a_{n}\right\}$ must contain infinitely many 6 's and infinitely many 7's. We show a more general result which immediately answers their question in the affirmative.

Theorem. Let b, c be integers at least 2 and let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence with each $a_{n} \in\{0,1, \ldots, b-1\}$. Suppose that for each positive integer m there is some integer N_{m}, such that c^{m} divides $a_{0}+a_{1} b+\cdots+a_{n} b^{n}$ for each $n \geq N_{m}$. If $\left\{a_{n}\right\}$ is eventually periodic, then $\left\{a_{n}\right\}$ is identically zero.

Proof. It clearly suffices to prove the result in the case that $c=p$, a prime. First note that the hypothesis that N_{m} always exists implies that either $\left\{a_{n}\right\}$ is identically zero or $p \mid b$. Indeed, let

$$
A_{n}:=\sum_{i=0}^{n-1} a_{i} b^{i}
$$

for $n=1,2, \ldots$ Let m be so large that $p^{m} \geq b$. If $n>N_{m}$, then

$$
p^{m}\left|A_{n}, \quad p^{m}\right| A_{n+1}=A_{n}+a_{n} b^{n}
$$

so that $p^{m} \mid a_{n} b^{n}$. But $0 \leq a_{n} \leq b-1$ and $p^{m} \geq b$. Thus, either $\left\{a_{n}\right\}$ is eventually zero or $p \mid b$. But if $\left\{a_{n}\right\}$ is eventually zero, then there is some N with $A_{n}=A_{N}$ for all $n \geq N$. Thus, $p^{m} \mid A_{N}$ for all m, so that $A_{N}=0$ and $\left\{a_{n}\right\}$ is identically zero.

