SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
53. [1993, 39] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Prove analytically that

$$
\sqrt[3]{19+9 \sqrt{6}}+\sqrt[3]{19-9 \sqrt{6}}
$$

is an integer.
Solution I by Bob Prielipp, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Gregory Bruton, Cape Girardeau, Missouri; and Sherri Palmer, Ste. Genevieve, Missouri.

Since $(1+\sqrt{6})^{3}=19+9 \sqrt{6}$ and $(1-\sqrt{6})^{3}=19-9 \sqrt{6}$, the desired sum equals 2 .
Solution II by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana; Donald P. Skow, University of Texas-Pan American, Edinburg, Texas; Kanadasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas; Seung-Jin Bang, Albany, California; Joe Howard, New Mexico Highlands University, Las Vegas, New Mexico; J. Sriskandarajah, University of Wisconsin Center-Richland, Richland Center, Wisconsin; and the proposer.

Let $s=\sqrt[3]{19+9 \sqrt{6}}$ and $t=\sqrt[3]{19-9 \sqrt{6}}$. Note that $s t=\sqrt[3]{19^{2}-9^{2} 6}=-5$ and $s^{3}+t^{3}=(19+9 \sqrt{6})+(19-9 \sqrt{6})=38$. Since

$$
(s+t)^{3}=s^{3}+3 s^{2} t+3 s t^{2}+t^{3}=\left(s^{3}+t^{3}\right)+3 s t(s+t)=38-15(s+t)
$$

we see that $s+t$ is a root of the equation $x^{3}+15 x-38=0$. Noting that $x=2$ is a root of this equation, we have $x^{3}+15 x-38=(x-2)\left(x^{2}+2 x+19\right)$. Since $x^{2}+2 x+19$ has no real roots, it follows that $s+t=2$.

