ON THE EVALUATION OF MULTIPLE INTEGRALS

K. L. D. Gunawardena
University of Wisconsin - Oshkosh

1. Introduction. The students in my Mathematical Statistics course came across the following double integrals, and were unable to evaluate them using techniques that they had learned in calculus courses. The two integrals were

$$
\int_{0}^{1} \int_{0}^{1} \frac{\theta^{2}\left(x_{1} x_{2}\right)^{\theta-1}}{\ln \left(x_{1} x_{2}\right)} d x_{1} d x_{2} \text { and } \int_{0}^{\infty} \int_{0}^{\infty} \frac{\theta^{2}\left[\left(1+x_{1}\right)\left(1+x_{2}\right)\right]^{-(\theta+1)}}{\ln \left[\left(1+x_{1}\right)\left(1+x_{2}\right)\right]} d x_{1} d x_{2}
$$

where $\theta>0$. The computer algebra systems Derive and Mathematica were unable to evaluate the integrals. However, using results from Probability Theory the two integrals can be evaluated. We will generalize the two double integrals and instead consider the two multiple integrals

$$
\int_{0}^{1} \cdots \int_{0}^{1} \frac{\theta^{n}\left(x_{1} \cdots x_{n}\right)^{\theta-1}}{\ln \left(x_{1} \cdots x_{n}\right)} d x_{1} \cdots d x_{n}
$$

and

$$
\int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{\theta^{n}\left[\left(1+x_{1}\right) \cdots\left(1+x_{n}\right)\right]^{-(\theta+1)}}{\ln \left[\left(1+x_{1}\right) \cdots\left(1+x_{n}\right)\right]} d x_{1} \cdots d x_{n}
$$

where $\theta>0$ and n is an integer greater than or equal to 2 .
The key probability result needed to evaluate the integrals is the following.
Let X_{1}, \ldots, X_{n} be n random variables with joint probability density function (pdf) $f\left(x_{1}, \ldots, x_{n}\right)$ and $Y=g\left(X_{1}, \ldots, X_{n}\right)$. The expected value $E(Y)$ can be obtained in one of two ways. We could directly calculate

$$
E g\left(X_{1}, \ldots, X_{n}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}
$$

