ITERATIONS ON CONVEX QUADRILATERALS

Tamela Underwood
Southern Illinois University at Carbondale
Mangho Ahuja
Southeast Missouri State University

1. Introduction. The object of this paper is to study the effect of the repeated applications of a particular process \mathcal{P}, when it is performed on an arbitrary (convex) quadrilateral. The process is described below.

Process \mathcal{P}. Given a quadrilateral $A B C D$, we construct squares on the sides $A B, B C$, $C D$, and $D A$ [Fig. 1]. All four squares are constructed on the outside of $A B C D$. Let P_{1}, Q_{1}, R_{1}, and S_{1} denote the centers of the squares on the sides $A B, B C, C D$, and $D A$, respectively. By joining the centers of the squares a new quadrilateral $P_{1} Q_{1} R_{1} S_{1}$ is obtained. The process of obtaining quadrilateral $P_{1} Q_{1} R_{1} S_{1}$ from quadrilateral $A B C D$ is defined as the process \mathcal{P}.

We will denote $P_{1} Q_{1} R_{1} S_{1}$ by $\mathcal{P}[A B C D]$ and also by Π_{1}. In general $P_{n} Q_{n} R_{n} S_{n}$ and Π_{n} will denote the quadrilateral obtained by applying the process n times. In Proposition 1 we will prove that the quadrilateral $P_{1} Q_{1} R_{1} S_{1}$ has the following properties:
(i) $P_{1} R_{1}=Q_{1} S_{1}$, i.e. the diagonals are equal, and
(ii) $P_{1} R_{1}$ is perpendicular to $Q_{1} S_{1}$, i.e. the diagonals are perpendicular.

We note that properties (i) and (ii) are not sufficient to make $P_{1} Q_{1} R_{1} S_{1}$ a square. For our purpose we may define a square as follows. A quadrilateral $P Q R S$ is a square if it has the following three properties:
(i) $P R=Q S$,
(ii) $P R$ is perpendicular to $Q S$,
(iii) the diagonals $P R$ and $Q S$ bisect each other.

We have seen that just one application of process \mathcal{P} transforms an arbitrary quadrilateral into one which satisfies two of the three properties for a square. One wonders what effect repeated applications of \mathcal{P} would have on $A B C D$. Since Π_{1} satisfies (i) and (ii), it is obvious that every quadrilateral Π_{n} will also satisfy (i) and (ii). Let M_{n} and N_{n} denote

