ITERATIONS ON CONVEX QUADRILATERALS

Tamela Underwood

Southern Illinois University at Carbondale

Mangho Ahuja

Southeast Missouri State University

1. Introduction. The object of this paper is to study the effect of the repeated applications of a particular process \mathcal{P} , when it is performed on an arbitrary (convex) quadrilateral. The process is described below.

<u>Process</u> \mathcal{P} . Given a quadrilateral ABCD, we construct squares on the sides AB, BC, CD, and DA [Fig. 1]. All four squares are constructed on the outside of ABCD. Let P_1 , Q_1 , R_1 , and S_1 denote the centers of the squares on the sides AB, BC, CD, and DA, respectively. By joining the centers of the squares a new quadrilateral $P_1Q_1R_1S_1$ is obtained. The process of obtaining quadrilateral $P_1Q_1R_1S_1$ from quadrilateral ABCD is defined as the process \mathcal{P} .

We will denote $P_1Q_1R_1S_1$ by $\mathcal{P}[ABCD]$ and also by Π_1 . In general $P_nQ_nR_nS_n$ and Π_n will denote the quadrilateral obtained by applying the process n times. In Proposition 1 we will prove that the quadrilateral $P_1Q_1R_1S_1$ has the following properties:

- (i) $P_1R_1 = Q_1S_1$, i.e. the diagonals are equal, and
- (ii) P_1R_1 is perpendicular to Q_1S_1 , i.e. the diagonals are perpendicular.

We note that properties (i) and (ii) are not sufficient to make $P_1Q_1R_1S_1$ a square. For our purpose we may define a square as follows. A quadrilateral PQRS is a square if it has the following three properties:

- (i) PR = QS,
- (ii) PR is perpendicular to QS,
- (iii) the diagonals PR and QS bisect each other.

We have seen that just one application of process \mathcal{P} transforms an arbitrary quadrilateral into one which satisfies two of the three properties for a square. One wonders what effect repeated applications of \mathcal{P} would have on ABCD. Since Π_1 satisfies (i) and (ii), it is obvious that every quadrilateral Π_n will also satisfy (i) and (ii). Let M_n and N_n denote