A PERPLEXING FINITE CONTINUED FRACTION

Stanley Rabinowitz
MathPro Press, Westford, Massachusetts

Let

$$
H_{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

be the nth Harmonic number. Although there is no closed form expression for H_{n} in terms of common mathematical functions, it is known that H_{n} can be expressed in terms of Stirling numbers. Specifically,

$$
H_{n}=\frac{1}{n!}\left[\begin{array}{c}
n+1 \\
2
\end{array}\right]
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]$ denotes the Stirling Cycle number (Stirling number of the first kind) which is equal to the number of permutations of n objects that have exactly k cycles ([4], p. 261).

In the early 1980's, I became interested in the related expression,

$$
S_{n}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{\ddots \cdot+\frac{1}{n}}}}}
$$

also written as

$$
S_{n}=\frac{1}{1+} \frac{1}{2+} \frac{1}{3+} \cdots+\frac{1}{n}
$$

which is a simple finite continued fraction with n terms. Specifically, I wanted to know if there is a closed form expression for S_{n}, and if not, can S_{n} be expressed in terms of H_{n} ?

