SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
45. [1992, 88] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let α, β, and γ be the direction angles of a vector R. Without using Lagrange multipliers, show that

$$
\cos \alpha+\cos \beta+\cos \gamma-2 \cos \alpha \cos \beta \cos \gamma \leq \sqrt{2}
$$

Solution by the proposer.
If we let

$$
\cos \alpha=\frac{a}{\sqrt{2}}, \quad \cos \beta=\frac{b}{\sqrt{2}}, \quad \cos \gamma=\frac{c}{\sqrt{2}},
$$

then we need to show that

$$
a+b+c-a b c \leq 2
$$

Thus, it is enough to prove that

$$
4\left(4-(a+b+c-a b c)^{2}\right) \geq 0
$$

But, using

$$
a^{2}+b^{2}+c^{2}=2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)=2
$$

we have

$$
\begin{aligned}
4\left(4-(a+b+c-a b c)^{2}\right) & =(2-2 a b)(2-2 a c)(2-2 b c)+4(a b c)^{2} \\
& =\left(c^{2}+(a-b)^{2}\right)\left(b^{2}+(a-c)^{2}\right)\left(a^{2}+(b-c)^{2}\right)+4(a b c)^{2}
\end{aligned}
$$

This completes the proof. Note that equality holds if R is perpendicular to one of the axes and is making a 45-degree angle with each of the other two axes.

