A CHALLENGING AREA PROBLEM REVISITED

Robert L. Doucette
McNeese State University

Some years ago a problem was proposed in the American Mathematical Monthly [1] for which the editors received no correct solutions before the deadline. Although eventually a solution was published (under the title "One Tough Area Problem" [2]), it is relatively involved. I would like to present a quite different, simpler solution.

The problem is to find the area of the convex planar region

$$
R=\{P: P A+P B+P C \leq 2 a\},
$$

where $A B C$ is an equilateral triangle of perimeter $3 a$.
For convenience we take $a=1$. We start by imposing a rectangular coordinate system in which the coordinates of A, B, C are $(-1 / 2,0),(1 / 2,0)$, and $(0, \sqrt{3} / 2)$ respectively. As mentioned in [2], the convexity of R is relatively easy to show using the triangle inequality. Let ∂R denote the boundary of R. Clearly A, B and C are on ∂R. We may deduce that the portion of ∂R in quadrant I is a convex curve connecting C and B. A parameterization of this curve may be obtained by constructing a circle of radius $r, 0 \leq r \leq 1$, with center C; and an ellipse with foci A and B, and major axis of length $2-r$. If P is the point of intersection in quadrant I , then $P C=r$ and $P A+P B=2-r$, so that $P A+P B+P C=2$. See the figure below. As r goes from 0 to $1, P$ travels along ∂R from C to B. The coordinates (x, y) of P can be found by solving the system

$$
\begin{equation*}
x^{2}+(y-\sqrt{3} / 2)^{2}=r^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x^{2}}{\left(\frac{2-r}{2}\right)^{2}}+\frac{y^{2}}{\left(\frac{2-r}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}=1 . \tag{2}
\end{equation*}
$$

