EVALUATION OF A FAMILY OF SUMMATIONS

Russell Euler
Northwest Missouri State University

The purpose of this paper is to evaluate

$$
\begin{equation*}
S=S(p)=\sum_{n=1}^{2 p-1}\left(2^{n-1} \prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}+\frac{n \pi}{2 p}\right)\right) \tag{1}
\end{equation*}
$$

where p is any positive integer. When $n=1$ the first term in the sum is taken to be 1 since empty products are assumed to be 1 .
$\underline{\text { Lemma. If } \sin \theta \neq 0, \text { then }}$

$$
2^{n-1} \prod_{k=1}^{n-1} \sin \left(\frac{k \pi}{n}+\theta\right)=\frac{\sin n \theta}{\sin \theta}
$$

Proof. Since the nth roots of unity are

$$
e^{\frac{2 k \pi i}{n}}
$$

for $k=0,1, \ldots, n-1$,

$$
\begin{equation*}
x^{n}-1=(x-1) \prod_{k=1}^{n-1}\left(x-e^{\frac{2 k \pi i}{n}}\right) \tag{2}
\end{equation*}
$$

