SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
37. [1991, 149] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Lines l_{1} and l_{2} are concurrent at O. Let $\left\{a_{i}\right\}$ be a sequence of points on l_{1} and $\left\{b_{i}\right\}$ be a sequence of points on l_{2} such that

$$
d\left(O, a_{1}\right)=d\left(a_{i}, a_{i+1}\right)=d\left(O, b_{1}\right)=d\left(b_{i}, b_{i+1}\right)>0
$$

for $i=1,2,3, \ldots$. If M_{i} is the midpoint of the line segment $\overline{a_{i} b_{i}}$, prove that the points M_{i} are collinear.

Solution I by Andrea Rothbart, Webster University, St. Louis, Missouri. This solution uses a vector approach. For simplicity, let \vec{x} stand for the vector $\overrightarrow{O a_{1}}$ and \vec{y} stand for the vector $\overrightarrow{O b_{1}}$. Then, $\overrightarrow{O b_{n}}=n \vec{y}$ and $\overrightarrow{O a_{n}}=n \vec{x}$. Also,

$$
\overrightarrow{b_{n} a_{n}}=\overrightarrow{b_{n} O}+\overrightarrow{O a_{n}}=-n \vec{y}+n \vec{x}=n(\vec{x}-\vec{y}) .
$$

Thus,

$$
\overrightarrow{O M_{n}}=\overrightarrow{O b_{n}}+\overrightarrow{b_{n} M_{n}}=n \vec{y}+\frac{1}{2} n(\vec{x}-\vec{y})=\frac{n}{2}(\vec{x}+\vec{y})=n \overrightarrow{O M_{1}}
$$

Since each of the vectors $\overrightarrow{O M_{n}}$ is a multiple of $\overrightarrow{O M_{1}}$, the points M_{1}, M_{2}, \ldots are collinear.
Solution II by Seung-Jin Bang, Seoul, Republic of Korea. We may assume that the line l_{1} is the x-axis, the lines l_{1} and l_{2} are concurrent at $O=(0,0)$, and $d\left(O, a_{1}\right)=a>0$. Then we have $a_{i}=(i a, 0)$.

Case I. The lines l_{1} and l_{2} are perpendicular. Then $b_{i}=(0, i a)$. It follows that

$$
M_{i}=\frac{1}{2}\left(a_{i}+b_{i}\right)=\frac{i a}{2}(1,1)
$$

and the points M_{i} lie on the line $y=x$.
Case II. The equation of the line l_{2} is $y=k x, k=\tan \theta\left(0<\theta<\frac{\pi}{2}, \frac{\pi}{2}<\theta<\pi\right)$. Then

$$
b_{i}=(i a \cos \theta, i a \sin \theta)
$$

