SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

25. [1990, 140] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let P be the free product with amalgamations of any collection $\{C_{\gamma}\}_{\gamma \in \Gamma}$ of infinite cyclic groups, where Γ is an indexing set of cardinality greater than one.

A. Construct an element $h \in P$ and a subgroup T < P such that |P:T| is infinite but |P:< h, T > | is finite.

B. Is h uniquely determined? Is T uniquely determined?

Solution by the proposer.

Let $C_{\gamma} = \langle c_{\gamma} \rangle$, let $H_{\gamma} = \langle c_{\gamma}^{m_{\gamma}} \rangle$, where m_{γ} are natural numbers, greater than one, and let

$$P = \star_{\gamma \in \Gamma} (C_{\gamma}; H_{\gamma})$$

with amalgamated subgroup H.

A. Consider an arbitrary element

$$h = c_{\gamma}^{qm_{\gamma}} \ (\gamma \in \Gamma)$$

of H, where q is a natural number. Now, let

$$T = < c_{\gamma}^{p_{\gamma}} : \gamma \in \Gamma > ,$$

where p_{γ} are prime numbers greater than one and $(p_{\gamma}, qm_{\gamma}) = 1$, for all $\gamma \in \Gamma$. We claim that this *h* is the required element and also the subgroup *T* defined as above is the required subgroup. (Note that if Γ is finite and *p* is any prime number greater than one, such that $(p, qm_{\gamma}) = 1$, then

$$T = \langle c_{\gamma}^p : \gamma \in \Gamma \rangle$$
).

Proof of claim: $(p_{\gamma}, qm_{\gamma}) = 1$ implies that there are integers r_{γ} and s_{γ} such that

$$r_{\gamma}p_{\gamma} + s_{\gamma}qm_{\gamma} = 1 \ .$$

Thus,

$$c_{\gamma} = c_{\gamma}^{r_{\gamma}p_{\gamma} + s_{\gamma}qm_{\gamma}}$$