A MATRIX METHOD FOR SOLVING THE POSTAGE STAMPS PROBLEM

Wen-Seng Chou
Institute of Mathematics, Academia Sinica, Nankang, Taipai, Taiwan
Harold Bowman and Jau-Shyong Shiue
University of Nevada, Las Vegas
Dedicated to the memory of Professor C. H. Teng

1. Introduction. In several recent papers Gilder [1] and Planitz [2] considered the problem of purchasing postage stamps of various denominations so as to meet a fixed budget. If there are n types of stamps this requires the solution of the equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=c \tag{1.1}
\end{equation*}
$$

where a_{i} is the cost of the i th type of stamp, x_{i} is the number of stamps and c is the budget, where x_{i} and a_{i} are non-negative integers. In [1] Gilder discusses the solution in integers of the equation

$$
\begin{equation*}
12 x_{1}+17 x_{2}=100 z \tag{1.2}
\end{equation*}
$$

where x_{1} is the number of second class stamps (at the old rate of $12 p$), x_{2} the number of first class stamps (at $17 p$), and z the total cost in pounds. Planitz extends the problem by shopping for three types of stamps giving the equation

$$
\begin{equation*}
13 x_{1}+18 x_{2}+22 x_{3}=c \tag{1.3}
\end{equation*}
$$

Solving (1.2) is a classical problem in diophantine equations provided that the x_{i} are unrestricted. The novelty of the postage stamp problem lies in the fact that the solution x_{i} must be non-negative.

To solve (1.2) Gilder [1] and Planitz [2] use the known continued fraction solution for (1.1) for $n=2$ to generate all integer solutions. The non-negative ones are then obtained

