SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the editor.

17. Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Let $A B C D$ be an isosceles tetrahedron. (An isosceles tetrahedron is a tetrahedron whose opposite edges are equal.) Denote the dihedral angle at edge $A B$ by $\angle A B$. Prove that

$$
\frac{A B}{\sin \angle A B}=\frac{A C}{\sin \angle A C}=\frac{A D}{\sin \angle A D}
$$

Solution by the proposer.

Let $A H$ be the altitude from A to face $B C D$ and let $A E$ be the altitude from A to $B C$ in face $A B C$. Then triangle $A H E$ is a right triangle with $\angle A E H=\angle B C$. Hence $\sin \angle B C=A H / A E$. But $A H=3 V / K$, where V is the volume of the tetrahedron and K is the area of any face; and $A E=2 K / B C$. Therefore $\sin \angle B C=3 V(B C) / 2 K^{2}$ and hence

$$
\frac{\sin \angle B C}{B C}
$$

is constant. Since $B C$ was arbitrary, this is true for all six edges of the tetrahedron.
18. Proposed by Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin.

Let f be differentiable on an interval of the form (M, ∞). Suppose

$$
\lim _{x \rightarrow \infty}\left(f(x)+x f^{\prime}(x)\right)=\alpha
$$

where α is finite. Prove

$$
\lim _{x \rightarrow \infty} f(x) \quad \text { and } \quad \lim _{x \rightarrow \infty} f^{\prime}(x)
$$

exist and evaluate these limits.

