SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the editor.

6. Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

Prove

$$\sum_{n \le x} \frac{1}{3n - 2} = \frac{1}{3} \log(3x - 2) + \frac{1}{6} \log 3 + \frac{\pi}{6\sqrt{3}} + \frac{\gamma}{3} + O\left(\frac{1}{x}\right) ,$$

where log is the natural log and γ is Euler's constant.

Comment by Don Redmond, Southern Illinois University at Carbondale, Carbondale, Illinois.

The problem as given is to find an asymptotic expansion for

$$\sum_{n \le x} \frac{1}{3n-2} \ .$$

If we look in Ramanujan's notebooks (B.C. Berndt, Ramanujan's Notebooks, part I, p. 185) we find the following in Chapter 8, Entry 7. If x is a positive integer and a and b are arbitrary complex numbers, then

$$\Psi\left(\frac{a}{b} + x + 1\right) - \Psi\left(\frac{a}{b} + 1\right) = b\sum_{k=1}^{x} \frac{1}{a + bk} .$$

Here

$$\Psi(z) = \frac{\Gamma'}{\Gamma} \big(z\big) \ .$$

In Abramowitz and Stegun (Handbook of Mathematical Functions, p. 259) we find an asymptotic expansion for $\Psi(z)$ so that we may