SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the editor.

10. Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

Show

$$\sum_{\substack{k=1\\(k,45)=1}}^{45} \sin^8 \frac{k\pi}{45} = \frac{51}{8} \ .$$

Solution by the proposers.

Let $w = \exp \frac{\pi i}{n}$. Then

$$\sum_{k=1}^{n} \sin^{4m} \frac{k\pi}{n} = \sum_{k=1}^{n} \left(\frac{w^{k} - w^{-k}}{2i}\right)^{4m}$$
$$= \frac{1}{2^{4m}} \sum_{k=1}^{n} \sum_{j=0}^{4m} (-1)^{j} {\binom{4m}{j}} (w^{k})^{4m-j} (w^{-k})^{j}$$
$$= \frac{1}{2^{4m}} \sum_{k=1}^{n} \sum_{j=0}^{4m} (-1)^{j} {\binom{4m}{j}} (w^{4m-2j})^{k}$$
$$= \frac{1}{2^{4m}} \sum_{j=0}^{4m} (-1)^{j} {\binom{4m}{j}} \sum_{k=1}^{n} (w^{4m-2j})^{k} .$$

Now

$$\sum_{k=1}^{n} \left(w^{4m-2j} \right)^k = \begin{cases} n, & \text{if } w^{4m-2j} = 1, \\ \frac{w^{4m-2j}(1-(w^n)^{4m-2j})}{1-w^{4m-2j}} = 0, & \text{if } w^{4m-2j} \neq 1. \end{cases}$$

But $w^{4m-2j} = 1$ iff $\frac{2m-j}{n}$ is an integer. Also, if $n \mid 2m - j$, then there exists an integer k such that 2m - j = kn. Therefore,

$$0 \le j = 2m - kn \le 4m$$