THE GENERATING FUNCTION

FOR THE FIBONACCI SEQUENCE

Mohammad K. Azarian
University of Evansville

Definition. Let $a_{0}, a_{1}, a_{2}, \ldots$, be a sequence of real numbers.

The function

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

is called the generating function for the given sequence.

Let $F_{n}(n \geq 1)$ represent the general term of the Fibonacci sequence

$$
1,1,2,3,5,8,13, \ldots
$$

The generating function for this sequence is

$$
\sum_{n=1}^{\infty} F_{n} x^{n}
$$

and it is well-known that

$$
\begin{equation*}
\frac{x}{1-x-x^{2}}=\sum_{n=1}^{\infty} F_{n} x^{n} \tag{1}
\end{equation*}
$$

