AN ANALYTICAL APPROACH TO A

TRIGONOMETRIC INTEGRAL

Joseph Wiener

The University of Texas-Pan American

The integral of $\sin ^{2} x$ or $\cos ^{2} x$ between 0 and $\frac{\pi}{2}$ (or 0 and π) is usually calculated by changing the integrand according to the well-known half-angle formula. However, students with a phobia for trigonometry would prefer a simple geometric derivation of the answer suggested in [1]. The result is obtained immediately by noticing the equality of the areas of the regions under the graphs of $\sin ^{2} x$ and $\cos ^{2} x$ and by integrating the basic trigonometric identity $\sin ^{2} x+\cos ^{2} x=1$. This idea is equivalent to the following analytical approach. Let

$$
C=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x, \quad S=\int_{0}^{\frac{\pi}{2}} \sin ^{2} x d x .
$$

Since the substitution $x=\frac{\pi}{2}-u$ transforms either integral to the other, then $C=S$. Furthermore, integrating the basic identity between 0 and $\frac{\pi}{2}$ yields $C+S=\frac{\pi}{2}$, which implies $C=S=\frac{\pi}{4}$.

