ON THE COMMON ZEROES OF FINITE BLASCHKE PRODUCTS

Ramesh Garimella

Northwest Missouri State University

In [1] it has been shown that if K is any non-empty closed subset of the complex plane without any interior, and P_1, P_2, \dots, P_n are polynomials with complex coefficients such that any complex linear combination of P_i 's has a zero in K, then P_i 's must have a common zero in K. In this short note we prove a similar result for finite Blaschke products on the unit disc U of the complex plane. More precisely, if \mathcal{B} is a finite dimensional vector space of analytic functions on U consisting of a basis of finite Blaschke products, and K is a non-empty closed set in $U - \{0\}$ with empty interior such that each element of \mathcal{B} has a zero in K, then there exists a z_0 in K such that $g(z_0) = 0$ for every g in \mathcal{B} . Refer to [2], for results on Blaschke products.

<u>Theorem</u>. Let $\{k_i\}_{i=1,2,\dots,n}$ be a sequence of positive integers and, $\{l_i\}_{i=1,2,\dots,n}$ be sequences of non-negative integers. Let K be a