THE VOLUME OF AN n-SIMPLEX

 WITH MANY EQUAL EDGES

 WITH MANY EQUAL EDGES}

Stanley Rabinowitz

Westford, Massachusetts

It is well known that the volume of a regular n-simplex with edge length s is

$$
\frac{s^{n}}{n!} \sqrt{\frac{n+1}{2^{n}}} .
$$

But suppose one edge has length b and all the other edges have length a. Is there a simple formula for the volume of the simplex in that case? What if all the edges incident at a given vertex have length b and all the other edges have length a ?

It is these questions that motivated the investigation that led to the following result:

Theorem. Let K be an n-simplex in E^{n}. Suppose the vertices of K are colored with r colors, $c_{1}, c_{2}, \ldots, c_{r}(1 \leq r \leq n+1)$. Let the number of vertices colored c_{i} be $m_{i}\left(1 \leq m_{i} \leq n+1\right)$. It is given that if an edge has both its vertices the same color, c_{i}, the length of that edge is a_{i}. If the two vertices of an edge have different color, the edge has length s. Then the volume of K is

$$
\frac{1}{n!2^{\frac{n}{2}}} \prod_{i=1}^{r} a_{i}^{m_{i}-1} \sqrt{(-1)^{r+1}\left(\prod_{i=1}^{r}\left(\left(m_{i}-1\right) a_{i}^{2}-m_{i} s^{2}\right)\right) \sum_{i=1}^{r} \frac{m_{i}}{\left(m_{i}-1\right) a_{i}^{2}-m_{i} s^{2}}} .
$$

