SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
157. [2005, 194] Proposed by José Luis Díaz-Barrero, Universidad Politècnica de Cataluña, Barcelona, Spain.

Let a, x be real numbers such that $1<a<x$. Prove that

$$
\left(\sum_{k=1}^{n} \log _{a^{k(k+1)}}^{-1} x\right)\left(\log _{a} \sqrt[n+1]{x}{ }^{n}\right) \geq n^{2}
$$

Solution by Joe Flowers, St. Mary's University, San Antonio, Texas.
We have

$$
\log _{a} \sqrt[n+1]{x^{n}}=\frac{n}{n+1} \log _{a} x
$$

and

$$
\log _{a^{k(k+1)}} x=\frac{\log _{a} x}{\log _{a} a^{k(k+1)}}=\frac{\log _{a} x}{k(k+1)}
$$

so

$$
\log _{a^{k(k+1)}}^{-1} x=\frac{k(k+1)}{\log _{a} x}
$$

Therefore,

$$
\begin{aligned}
& \left(\sum_{k=1}^{n} \log _{a^{k(k+1)}}^{-1} x\right)\left(\log _{a} \sqrt[n+1]{x^{n}}\right)=\left(\frac{1}{\log _{a} x} \sum_{k=1}^{n} k(k+1)\right)\left(\frac{n}{n+1} \log _{a} x\right) \\
& =\frac{n}{n+1}\left(\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} k\right)=\frac{n}{n+1}\left(\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right) \\
& =n^{2} \cdot \frac{n+2}{3} \geq n^{2}
\end{aligned}
$$

