SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
165. [2007; 151] Proposed by José Luis Díaz-Barrero, Universidad Politècnica de Cataluña, Barcelona, Spain.

Let n be a positive integer. Prove that

$$
\frac{1}{2 n}\left(\sum_{k=1}^{n} \sqrt{1+\left(F_{k}\binom{n}{k}\right)^{2}}\right)^{2} \geq F_{2 n}
$$

where F_{n} is the nth Fibonacci number defined by $F_{0}=0, F_{1}=1$ and for all $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$.

Solution I by Brian Bradie, Christopher Newport University, Newport News, Virginia. For $n=1$, we have

$$
\frac{1}{2}\left(\sqrt{1+F_{1}^{2}}\right)^{2}=\frac{1}{2}(\sqrt{1+1})^{2}=1=F_{2}
$$

whereas, for $n=2$, we have

$$
\begin{aligned}
\frac{1}{4}\left(\sqrt{1+\left(2 F_{1}\right)^{2}}+\sqrt{1+F_{2}^{2}}\right)^{2} & =\frac{1}{4}(\sqrt{1+4}+\sqrt{1+1})^{2} \\
& =\frac{1}{4}(7+2 \sqrt{10})>3=F_{4}
\end{aligned}
$$

To proceed further, first note that by a straightforward application of mathematical induction we can show that $F_{m}>m$ for all $m \geq 6$. Now, let $n \geq 3$. Then

$$
\frac{1}{2 n}\left(\sum_{k=1}^{n} \sqrt{1+\left(F_{k}\binom{n}{k}\right)^{2}}\right)^{2}>\frac{1}{2 n}\left(\sum_{k=1}^{n} F_{k}\binom{n}{k}\right)^{2}=\frac{1}{2 n} F_{2 n}^{2}
$$

