
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

165. [2007; 151] Proposed by José Luis Dı́az-Barrero, Universidad
Politècnica de Cataluña, Barcelona, Spain.

Let n be a positive integer. Prove that
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where Fn is the nth Fibonacci number defined by F0 = 0, F1 = 1 and for
all n ≥ 2, Fn = Fn−1 + Fn−2.

Solution I by Brian Bradie, Christopher Newport University, Newport
News, Virginia. For n = 1, we have
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whereas, for n = 2, we have
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To proceed further, first note that by a straightforward application of math-
ematical induction we can show that Fm > m for all m ≥ 6. Now, let n ≥ 3.
Then
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