SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

169. Proposed by Dorin Marghidanu, Colegiul National "A. I. Cuza", Corabia, Romania.

Let 0 < a, b, c < 1. Prove that $2^{a}(b+c)^{1-a} + 2^{b}(c+a)^{1-b} + 2^{c}(a+b)^{1-c} < 4(a+b+c).$

Solution by Tuan Le (student), Fairmont High School, Anaheim, California. Since 0 < a < 1, applying Bernoulli's inequality, we have

$$\left(\frac{2}{b+c}\right)^{a} = \left(1 + \frac{1 - \frac{b+c}{2}}{\frac{b+c}{2}}\right)^{a} \le 1 + \frac{a(1 - \frac{b+c}{2})}{\frac{b+c}{2}}.$$

Multiplying both sides of this inequality by b + c, we obtain

$$2^{a}(b+c)^{1-a} \le 2a+b+c-a(b+c)$$

Similarly, we also obtain

$$2^{b}(a+c)^{1-b} \le 2b+a+c-b(a+c)$$

$$2^{c}(a+b)^{1-c} \le 2c+a+b-c(a+b).$$

Adding these inequalities together and again using the fact that 0 < a, b, c < 1, we obtain

$$2^{a}(b+c)^{1-a} + 2^{b}(a+c)^{1-b} + 2^{c}(a+b)^{1-c}$$

$$\leq 4(a+b+c) - 2(ab+bc+ac) < 4(a+b+c).$$

VOLUME 22, NUMBER 1

52