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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

145. [2004, 58] Proposed by José Luis Dı́az-Barrero, Universidad Politècnica
de Cataluña, Barcelona, Spain.

Let Fn denote the nth Fibonacci number (F0 = 0, F1 = 1, and Fn = Fn−1 +
Fn−2 for n ≥ 2) and let Ln denote the nth Lucas number (L0 = 2, L1 = 1, and
Ln = Ln−1 + Ln−2 for n ≥ 2). Prove that
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holds for all positive integer n ≥ 2.

Solution by the proposer. It is well known [1] that for a positive integrable func-
tion defined on the interval [a, b], the integral analogue of the AM-GM inequality
is given by
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Setting f(x) = x, a = Fn, and b = Ln into (1), yields
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Note that for all n ≥ 2, Ln − Fn > 0. Evaluating the preceding integrals and after
simplification, we obtain
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