SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
143. [2003, 201; 2004, 129] Proposed by José Luis Diaz-Barrero, Universidad Politécnica de Cataluña, Barcelona, Spain.

Let α, β, and γ be the angles of acute triangle $A B C$. Prove that

$$
\frac{\cot \alpha \cot \beta}{\sqrt{1-\cot \alpha \cot \beta}}+\frac{\cot \beta \cot \gamma}{\sqrt{1-\cot \beta \cot \gamma}}+\frac{\cot \gamma \cot \alpha}{\sqrt{1-\cot \gamma \cot \alpha}} \geq \sqrt{\frac{3}{2}}
$$

Solution by Ovidiu Furdui, Western Michigan University, Kalamazoo, Michigan. First we notice that the expressions under the square roots are positive since

$$
1-\cot \alpha \cot \beta=\frac{-\cos (\alpha+\beta)}{\sin \alpha \sin \beta} \geq 0
$$

since $\sin \alpha, \sin \beta>0$ and $\cos (\alpha+\beta) \leq 0$. (i.e. $\alpha+\beta \geq 90^{\circ} ; 180^{\circ}-\gamma \geq 90^{\circ}$ implies $\gamma \leq 90^{\circ}$). I'll make use of the following equality which holds in any triangle:

$$
\cot \alpha \cot \beta+\cot \beta \cot \gamma+\cot \gamma \cot \alpha=1
$$

where α, β, and γ are the angles of a given triangle $A B C$. Denote

$$
a=\cot \alpha \cot \beta, \quad b=\cot \beta \cot \gamma, \quad c=\cot \gamma \cot \alpha
$$

Let

$$
f:(0,1) \rightarrow \mathbb{R}, \quad \text { where } \quad f(x)=\frac{x}{\sqrt{1-x}}
$$

Then

$$
f^{\prime}(x)=\frac{2-x}{2(1-x)^{\frac{3}{2}}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{4-x}{4(1-x)^{\frac{5}{2}}}>0
$$

