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ANOTHER ELEMENTARY PROOF OF THE

CONVERGENCE-DIVERGENCE

OF p-SERIES

Rasul A. Khan

Recently Khan [2] gave a simple proof of the convergence-divergence of the
p-series

∑
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p. The divergence of this series for p ≤ 1 was shown by con-

tradiction while the convergence of the series for p > 1 was established by the
boundedness of the monotonic partial sums [2]. Here, we give a more direct and
very elementary proof of the same by using only the sum of a geometric series.
Moreover, a telescoping method is used to find sums of some interesting series.

We use the following simple fact:
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, |r| < 1. (1)

We consider integers j from 2m to 2m+1 − 1 (m = 0, 1, 2, . . . ), and note that the
number of terms are 2m+1 − 1− (2m − 1) = 2m+1 − 2m = 2m. Then, for any p we
write the p-series as
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If p > 1, it then follows from (1) and (2) that
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and the series converges. To show the divergence for p ≤ 1, we consider p = 1 first.
It is clear from (2) that
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