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Using the Dirichlet integral in n-dimensional Euclidean space, one can show that the

volume of an n-dimensional sphere with radius r is given by
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where n is a positive integer. Of course, ‘volume’ V1 is the length of the interval [−r, r] and

‘volume’ V2 is the area of the circle with radius r. So, V1(r) = 2r and V2(r) = πr2.

The surface area of an n-dimensional sphere with radius r is given by
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In [1], it was shown that Vn(1) has a maximum value when n = 5. The purpose of

this paper is to show that Sn = Sn(1) attains a maximum value for n = 7. This will be

accomplished by showing that

(a) S7 > S6 > S5 > S4 > S3 > S2 > S1 and

(b) {Sn}∞n=7 is a decreasing sequence.
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