SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the editor.

3. Proposed by Curtis Cooper and Robert E. Kennedy, Central Missouri State University, Warrensburg, Missouri.

The Fibonacci numbers F_n satisfy $F_0 = 0$, $F_1 = 1$, and

$$F_{n+2} = F_{n+1} + F_n$$
 for $n = 0, 1, 2, \dots$.

Show that

$$\sum_{i=1}^{n} F_i^3 = \frac{1}{10} F_{3n+2} + \frac{3}{5} (-1)^{n-1} F_{n-1} + \frac{1}{2} .$$

Solution by Joe Flowers, Northeast Missouri State University, Kirksville, Missouri and Dale Woods, Central (Oklahoma) State University, Edmond, Oklahoma (jointly).

The proof is by induction on n and use of the well-known explicit formula $F_n = \frac{1}{\sqrt{5}}(a^n - b^n)$ where $a = \frac{1+\sqrt{5}}{2}$ and $b = \frac{1-\sqrt{5}}{2}$. Note that $a \cdot b = -1$.

For n = 1,

$$\frac{1}{10}F_5 + \frac{3}{5}F_0 + \frac{1}{2} = \frac{5}{10} + 0 + \frac{1}{2} = 1,$$

as required. Now assume that

$$\sum_{i=1}^{k} F_i^3 = \frac{1}{10} F_{3k+2} + \frac{3}{5} (-1)^{k-1} F_{k-1} + \frac{1}{2} \text{ for some } k \ge 1$$