Resolution of Identity.

By

Tôzirô Ogasawara.

(Received April 20, 1935.)

Introduction.

Abstract Hilbert space \mathfrak{H} is characterised by the following five properties:

(a) \mathfrak{H} is a linear space.

(b) for any two elements f, g of \mathfrak{H} an inner product (f, g) is defined.

(c) \mathfrak{H} is complete.

(d) \mathfrak{H} is separable.

(e) for any positive integer n there exist n linearly independent elements.

As is well known, to every self-adjoint transformation H a resolution of identity $E(\lambda)$ corresponds, which is a projective transformation defined for $-\infty < \lambda < +\infty$ such that⁽¹⁾

- (1) $E(\lambda)E(\mu) = E(\mu)E(\lambda) = E(\lambda)$ for $\lambda < \mu$,
- (2) $\lim_{\lambda \to \lambda_0 = 0} E(\lambda) = E(\lambda_0)$ (3) $\lim_{\lambda \to -\infty} E(\lambda) = O$, and $\lim_{\lambda \to +\infty} E(\lambda) = 1$.

And there exists a one-to-one correspondence between H and $E(\lambda)$ by the expression $(H\mathfrak{f},\mathfrak{g}) = \int_{-\infty}^{+\infty} \lambda d(E(\lambda)\mathfrak{f},\mathfrak{g}).$

Using set U as parameter instead of λ , F. Maeda has generalised the concept of the resolution of identity as follows⁽²⁾: If E(U) is a self-adjoint transformation which depends on Borel subset U of a Borel set V in a metric space and satisfies the following conditions, then E(U) is said to be a resolution of identity.

⁽¹⁾ F. Riesz, Acta Szeged, 5 (1930), 23-54.

⁽²⁾ F. Maeda, This journal, 4 (1934), 57. K. Friedrichs has considered $E(\Delta)$ which depends on an interval Δ instead of λ . See, Math. Ann., 110 (1934), 54-62.