On the Space which admits a given Continuous Transformation Group in the extended sense.

By

Takasi SIBATA.

(Received 20, 4, 1934.)

We shall consider the space in which parallel directions along every curve are unaltered by all the transformations of a given continuous transformation group. This case we call the space which admits the given group in the extended sense.⁽¹⁾

First, by using the notations of Lie's symbols of infinitesimal transformations, we shall obtain the conditions in which a space admits a group in the extended sense.

Next, we will examine the case when the number of the order of the group admitted by a space in the extended sense, is maximum.

Lastly, in the general space which admits a group in the extended sense, we shall obtain the relations between the covariant derivatives and the transformation-derivatives⁽²⁾ for a vector field.

1. Let us consider a space V_n ,⁽³⁾ and let the coordinates be x^1, \ldots, x^n , and the coefficients of connection be L_{jk}^i . Then we can define the parallelism of vectors in V_n by the following infinitesimal transformations:⁽⁴⁾

⁽¹⁾ When the parallelism of vectors in a space, not parallel directions, is unaltered by all the transformations of a given group, I say that the space admits the group (not in the extended sense). I have treated this case in this journal 4 (1934), 111-126.

⁽²⁾ T. Sibata, this journal 4 (1934), 116-117.

⁽³⁾ In this paper we shall employ certain notations due to L.P. Eisenhart, Non-Riemannian Geometry (1927).

⁽⁴⁾ T. Sibata, loc. cit., 112.