An Extension of Parallel Displacement by Matrices.

By
Kakutarô Morinaga.

(Received January 20, 1934.)

I.

Let us suppose that $A(t)=\left(\left(a_{i j}(t)\right)\right)$ is a L-integrable matrix of t in an interval ($p \leqq t \leqq r$), and Y^{0} is any matrix. ${ }^{(1)}$ Here the order of the product of matrices is read from right to left. ${ }^{(2)}$ If we put

$$
Y^{\nu}=\prod_{k=1}^{\nu}\left\{I+\left(t_{k}-t_{k-1}\right) A\left(\xi_{k-1}\right)\right\} Y^{0} \quad \text { and } \quad t_{k-1} \leqq \xi_{k-1}<t_{k}
$$

we have

$$
\begin{equation*}
Y=\lim _{m \rightarrow \infty} Y^{m}=\int_{p}^{r}(I+A(t) d t) Y^{0}=\lim _{m \rightarrow \infty} \prod_{k=1}^{m} e^{\left(t_{k}-t_{k-1}\right) A\left(\xi_{k-1}\right)} Y^{0} \tag{1}
\end{equation*}
$$

The above defined Y is called the product integral of Y^{0} with respect to the matrix $A(t)$ from $t=p$ to r. Then we have as Caque-Fuchs's expansion of Y

$$
\begin{equation*}
\int_{p}^{r}(I+A(t) d t) Y^{0}=\left\{I+\int_{p}^{r}\left(A(t) \int_{p}^{t} A\left(t_{1}\right) d t_{1}\right) d t+\ldots\right\} Y^{0} \tag{2}
\end{equation*}
$$

Now we shall express the product integral of matrices in the form of an expansion using differential operations instead of the integral operations shown in (2). Form (1),

$$
Y=\lim _{m \rightarrow \infty}\left\{\left(I+A\left(t_{m-1}\right) \Delta t\right) \ldots\left(I+A\left(t_{2}\right) \Delta t\right)\left(I+A\left(t_{1}\right) \Delta t\right)\left(I+A\left(t_{0}\right) \Delta t\right)\right\}
$$

(1) L. Schlesinger, Math. Zeits. 33 (1931), 33-61; 35 (1932), 485-501.
(2) This is the opposite of the usual order.

