On Certain Functional Inequalities.

By

Kiyoshi Toda.
(Received October 10, 1933)
I
Mr. Jensen ${ }^{(1)}$ defined a convex function as a real one-valued function which satisfies the inequality

$$
\begin{equation*}
\frac{\varphi(x)+\varphi(y)}{2} \geqq \varphi\left(\frac{x+y}{2}\right) \tag{1}
\end{equation*}
$$

independently of the values of variables x and y in the given interval (α, β) and has proved that the inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right) / \sum_{i=1}^{n} p_{i} \geqq \varphi\left(\sum_{i=1}^{n} p_{i} x_{i} / \sum_{i=1}^{n} p_{i}\right) \tag{2}
\end{equation*}
$$

occurs for any positive quantities p_{i}. Conversely I wish to show, in this paper, that if (2) holds good independently of the variables x_{i} for certain p_{i} 's and n, then (1) also must hold, thus the inequality (2) takes place for and only for a convex function; in other words, the solution of the given functional inequality (2) is convex.

If the sum of some p_{i} 's $\left(p_{i}+p_{j}+\ldots+p_{k}=p\right.$ say $)$ is half the total sum $\sum_{i=1}^{n} p_{i}$, then by putting

$$
x_{i}=x_{j}=\ldots .=x_{k}=x \text { and the remaining } x ' s=y
$$

in (2), we clearly obtain (1). Even if this assumption does not hold, we can solve (2) by putting

$$
x_{1}=x, x_{2}=x_{3}=\ldots=x_{n}=y \quad \text { and } \quad p_{1}=p, p_{2}+p_{3}+\ldots p_{n}=q
$$

(1) Acta Math. (1906).

