Antworten auf die Fragen von Dr. W. Weber.

Von

Shinziro Mori.

(Eingegangen am 27. 5. 1933.)

Nachstehend antworte ich auf die Fragen, die Dr. W. Weber meine Arbeiten betreffend aufgeworfen hat,⁽¹⁾ obwohl mir alle diese Fragen als sehr einfältig und oberflächlich erscheinen.

Fragen von Weber.

- 1. Es sei Primideal \mathfrak{p}_i ein Teiler eines Ideals $\mathfrak{a}^{(2)}$ Ist \mathfrak{p}_i dann ein hochstes Primideal von $(\mathfrak{a}, \mathfrak{p}_i^{m'})$?
- 2. Es sei \Re ein kommutativer Ring mit Einheitselement, in dem der Teilerkettensatz gilt.⁽³⁾ Wird \Re dann die direkte Summe

$$\Re = \mathfrak{o}_1 + \mathfrak{o}_2 + \ldots + \mathfrak{o}_m,$$

wo jedes m_i das Einheitselement hat und direkt unzerlegbar ist, und m eine endliche ganze Zahl bedeutet?

3. Es sei $\mathfrak p$ ein von $\mathfrak R$ verschiedenes Primideal, das ein Teiler vom nicht-primären Ideal $\mathfrak a$ ist, und $\mathfrak q$ ein zu $\mathfrak p$ gehöriges Primärideal, von der Art, dass $\mathfrak q$ ein Teiler von $\mathfrak a$ ist, und es kein Primärideal zwischen $\mathfrak q$ und $\mathfrak a$ gibt, (4) und es sei auch $\mathfrak q=(\mathfrak a,\mathfrak p^{\mathfrak p+k})=\ldots=(\mathfrak a,\mathfrak p^{\mathfrak p})$ ($k\neq 0$). Existiert ein echter Teiler $\mathfrak a'$ von $\mathfrak a$, so dass

$$[(\alpha, \mathfrak{p}^{\rho}), \alpha'] = \alpha, \quad \alpha' \not\equiv 0 \ (\mathfrak{p})$$

ist?

4. Hilfssatz. Ist $\mathfrak p$ ein von $\mathfrak o$ verschiedenes Primideal, so ist $\mathfrak p$ dann und nur dann teilbar durch jede Potenz von jedem echten Teiler

^{· (1)} Zentralblatt über Mathematik, 5. Band, Heft 1 (1932), S. 7-8.

⁽²⁾ S. Mori, Ueber Ringe, in denen die grössten Primärkomponenten jedes Ideals eindeutig bestimmt sind, Journal of Science of the Hiroshima Univ., 1, S. 179, Z. 15.

⁽³⁾ S. Mori, Ueber Produktzerlegung der Ideale, Jour. of Hiroshima Univ., 2. S. 11.

⁽⁴⁾ S. Mori, Minimale Primarideale eines Ideals, Journal of Hiroshima Univ., 2, S. 28-29.