On Kernels and Spectra of Bounded Linear Transformations.

By

Fumitomo MAEDA.

(Received May 23, 1933.)

Let $\beta(E)$ be a completely additive, non-negative function of normal sets defined in a metric space R which is compact in itself, and be uniformly monotone almost everywhere $(\beta)^{(1)}$ in a β -normal set A. Let $\phi(E)$ be a complex valued set function which is absolutely continuous with respect to $\beta(E)$. When $\int_{A} |D_{\beta(E)}\phi(a)|^2 d\beta(E)$ is finite, then it is said that $\phi(E)$ belongs to the class $\mathfrak{L}_2(\beta)$. If we define the norm $||\phi||_{\beta}$ of $\phi(E)$ as

$$||\phi||_{\mathfrak{s}} = \left[\int_{A} |D_{\mathfrak{s}(E)}\phi(a)|^2 d\beta(E)\right]^{\frac{1}{2}},$$

and the inner product $(\phi, \psi)_{\beta}$ of two set functions $\phi(E)$ and $\psi(E)$ as

$$(\phi, \psi)_{\mathfrak{f}} = \int_{A} D_{\mathfrak{f}(E)} \phi(a) \overline{D_{\mathfrak{f}(E)} \psi(a)} deta(E) \; ,$$

then the space of all set functions of $\mathfrak{L}_2(\beta)$ is a Hilbert space.⁽²⁾ I will denote this space also by $\mathfrak{L}_2(\beta)$.

In this paper, I first shew that all bounded linear transformations T defined in $\mathfrak{L}_2(\beta)$ are expressed in the integral form

$$T\phi(E) = \int_A D_{\mathfrak{z}(E')} \mathfrak{K}(E, a') D_{\mathfrak{z}(E')} \phi(a') d\beta(E') ,$$

⁽¹⁾ That is, the β -value of the set of poles of $\beta(E)$ in A is zero. Cf. F. Maeda, this journal, 1 (1931), 3.

⁽²⁾ Cf. my previous paper "On the Space of Real Set Functions," (this journal, **3** (1933), 1-42), where "linear manifolds" is equivalent to "closed linear manifolds" in this paper.

Journal of Science of Hiroshima University, Ser, A. Vol. 3.