On Some Reducible Quadratic Differential Forms in n=Dimensional Space.

By
Toranosuke Iwatsuki.

(Received Sept. 25, 1930)

Introduction.

We put the question ${ }^{(1)}$: In an n-dimentional space, giving its fundamental differential form :

$$
\begin{equation*}
d s^{2}=g_{\mu \nu} d x_{\mu} d x_{\nu} \tag{1}
\end{equation*}
$$

on what condition can (1) be transformed into the form :

$$
\begin{equation*}
d s^{2}=\sum_{i, k=1}^{n-1} \rho \bar{g}_{i k} d X_{i} d X_{k}+\theta d X^{2} \tag{2}
\end{equation*}
$$

where $\bar{g}_{i k}$ does not contain X, and ρ and θ are functions of X_{1}, X_{2}, $\ldots X_{n-1}, X$?

Notations and Formulae.

In this paper, we adopt the notation and formulae as follows :

$$
d s^{2}=g_{\mu \nu} d x_{\mu} d x_{\nu}
$$

denotes the fundamental quadratic differential form of the n-dimensional space ;

$$
\begin{equation*}
\Gamma_{\nu} A_{\mu}=\frac{\partial A_{\nu}}{\partial x_{\nu}}-\{\mu \nu, \alpha\} A_{\alpha} \tag{3}
\end{equation*}
$$

(1) Eisenhalt obtained the condition in a geometrical form. The condition is that the space admits of a family of hypersurfaces with indeterminate lines of curvature. L.P. Eisenhalt. Riemannian Geom. (1926) p. 182.

