Indices of the Orthogonal Systems in the Non-Separable Hilbert Space.

By

Fumitomo MAEDA.

(Received Dec. 10, 1936.)

Let \mathfrak{H} be an abstract Hilbert space; that is, \mathfrak{H} is a linear vector space where the inner product is defined, and it is complete. When \mathfrak{H} is separable, we usually use the natural number for the index of the orthogonal system of elements in \mathfrak{H} , i. e. $\{\mathfrak{g}_n\}$, *n* being natural numbers, and

$$(\mathfrak{g}_m,\mathfrak{g}_n)=\delta_{mn}$$
,

where $\delta_{mn} = 0$ when $m \neq n$, and = 1 when m = n. When $\{g_n\}$ is complete in $\mathfrak{H}, \{g_n\}$ is used as a basic of the representation of \mathfrak{H} . Put

$$a_n = (\mathfrak{f}, \mathfrak{g}_n),$$

then the sequence $\{a_n\}$ of complex numbers is the representative of f.

It is convenient in the theory of quantum mechanics to use a representative in which the elements of the basic system $\{g_n\}$ are eigenvectors of a self-adjoint operator. But the orthogonal system $\{g_n\}$ whose index is the natural number is applicable only in the case when the chosen self-adjoint operator has the discrete spectrum. When the chosen self-adjoint operator has the continuous spectrum, its eigenvectors have as index the real number, so that it is expressed by $\{g_r\}$ and it satisfies the following condition

$$(\mathfrak{g}_r,\mathfrak{g}_s)=\delta(r-s),$$

where $\delta(x)$ is the Dirac improper δ function, defined by

$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$
$$\delta(x) = 0 \qquad \text{for } x \neq 0.$$

In this case the representative of any element f is a point function