Domains of Representatives of Linear Operators.

By

Fumitomo MAEDA and Tôzirô OGASAWARA.

(Received Sept. 20, 1936.)

In a previous paper,⁽¹⁾ one of the authors investigated the representatives of linear operators. Let \mathfrak{H} be a complete linear vector space, where the inner product is defined, and let $\mathfrak{q}(U)$ be a completely additive vector valued differential set function, such that $\{\mathfrak{q}(U)\}$ is complete in \mathfrak{H} . Taking $\mathfrak{q}(U)$ as the basic of representation, we can represent \mathfrak{H} by the space of differential set functions $\mathfrak{L}_2(\sigma)$, where $\sigma(U) = || \mathfrak{q}(U) ||^2$. Let T be a linear operator in \mathfrak{H} which transforms \mathfrak{f} to \mathfrak{g} . That is

$$\mathfrak{g} = T\mathfrak{f}$$

Corresponding to this operator, we have an operator in $\mathfrak{L}_2(\sigma)$, which transforms the representative $\xi(U)$ of \mathfrak{f} to the representative $\eta(U)$ of \mathfrak{g} . We may denote it by the same symbol T so that

$$\eta(U) = \boldsymbol{T}\xi(U) \, .$$

On the other hand, let $\Re(U, U') = (Tq(U'), q(U))$ be the representative of T. Then we have

$$\eta(U) = \int_{V} \frac{\Re(U, dU') \,\xi(dU')}{\sigma(dU')}$$

But the last integral is an integral operator in $\mathfrak{L}_2(\sigma)$, which we denote by $T_{\mathfrak{R}}$, so that

$$\eta(U) = T_{\mathfrak{R}}\xi(U).$$

Thus we have the relation:

$$T \subseteq T_{\Re}$$
.⁽²⁾

⁽¹⁾ F. Maeda, "Representations of Linear Operators by Differential Set Functions," this journal, 6 (1936), 115-137.

⁽²⁾ This means that T_{\Re} is an extension of T.