Lattice Functions and Lattice Structure.

By

Fumitomo MAEDA.

(Received Jan. 21, 1939.)

G. Birkhoff⁽¹⁾ has proved that if in a lattice L a dimension function is defined, then L is a modular lattice. And J. v. Neumann⁽²⁾ says that if in a complemented continuous lattice L a unique dimension function which has some particular properties is defined, then L is a continuous geometry. These are remarkable facts, which show that the dimension function restricts the structure of the lattice.

In the present paper I investigate this problem in a general way. Let L be a lattice, and a real valued function $\phi(a)$ be defined for all $a \in L$; thus we may say that $\phi(a)$ is a lattice function. The properties of this lattice function $\phi(a)$ may be given in the following way:

(i) $\phi(a)$ is additive when

$$\phi(a \cup b) + \phi(a \cap b) = \phi(a) + \phi(b).$$

(ii) $\phi(a)$ is completely additive when

$$\phi(\sum (a_i; i=1, 2, \ldots)) = \sum \phi(a_i)$$

for any independent system $(a_i; i=1, 2, \ldots)$.

(iii) $\phi(a)$ is non-decreasing when

a < b implies $\phi(a) \leq \phi(b)$.

(iv) $\phi(a)$ is increasing when

a < b implies $\phi(a) < \phi(b)$.

I first investigate the relations between the increasing and the non-decreasing properties of the additive function $\phi(a)$ and the struc-

⁽¹⁾ G. Birkhoff [1], 744. The numbers in square brackets refer to the list given at the end of this paper.

⁽²⁾ J. v. Neumann [1], 99.