Homogeneous Basis for Continuous Geometry.

By

Fumitomo MAEDA.

(Received Jan. 21, 1939.)

J. v. Neumann, in his continuous geometry L, has defined the homogeneous basis, as a system of independent elements $(a_i; i=1, 2, \ldots, m)$ which are pairwise perspective and

$$a_1 \cup a_2 \cup \cdots \cup a_m = 1. \tag{1}$$

When L satisfies the chain-condition, we have a homogeneous basis in which all the elements a_i are minimal. But when L does not satisfy the chain-condition, we cannot have such a homogeneous basis with minimal elements.

Thus we meet with a similar situation to that of ring-decomposition in algebra. A ring \Re , without radical, with minimum-condition for right ideals, is a direct sum of simple right ideals, i. e.

$$\Re = \alpha_1 + \alpha_2 + \cdots + \alpha_n . \tag{2}$$

But when the ring does not satisfy the minimum-condition, we cannot decompose \Re in a direct sum of *simple* right ideals as (2). To investigate the latter case, in a previous paper⁽²⁾ I introduced a decomposition system of right ideals $\{\alpha_U; U \in \{U\}\}$, where $\{U\}$ is a Boolean algebra. α_U satisfies the following conditions:

$$\mathfrak{a}_{U_1} \cap \mathfrak{a}_{U_2} = \mathfrak{a}_{U_1 \cap U_2};$$

$$\alpha_U = \alpha_{U_1} + \alpha_{U_2} + \cdots + \alpha_{U_n} ,$$

when (U_1, U_2, \ldots, U_n) are independent and $U = U_1 \cup U_2 \cup \cdots \cup U_n$;

$$\mathfrak{a}_{V} = \mathfrak{R} ,$$

⁽¹⁾ J. v. Neumann [3], 30. The numbers in square brackets refer to the list given at the end of this paper.

⁽²⁾ F. Maeda [1].