Ring-Decomposition without Chain-Condition.

By

Fumitomo MAEDA.

(Received May 17, 1938.)

In algebra, the decomposition of a ring in a direct sum of simple right ideals is discussed on the basis of "chain-condition" or "minimum-condition." Thus, a ring \Re without radical, with minimum-condition for right ideals, is a direct sum of simple right ideals, i. e.

$$\Re = \mathfrak{a}_1 + \mathfrak{a}_2 + \cdots + \mathfrak{a}_n \,, \tag{1}$$

and there exist idempotents e_i $(i=1, 2, \ldots, n)$, such that

$$a_i = (e_i)_r$$
, $e_i e_j = 0$ when $i \neq j$,
 $1 = e_1 + e_2 + \cdots + e_n$.⁽¹⁾

and

When the ring \Re does not satisfy the minimum-condition, we cannot decompose \Re in a direct sum of *simple* right ideals as in (1). Hence we must consider ring-decomposition from another point of view. Since the set R_{\Re} of all right ideals is a lattice,⁽²⁾ from the point of view of the lattice theory we can investigate the set of right ideals which are used for the decompositions of \Re .

For example, consider the case where \Re without radical satisfies the minimum-condition. Then the decomposition (1) shows that \Re is the join of right ideals (a_1, a_2, \ldots, a_n) . Let V be the set of n positive integers $1, 2, \ldots, n$; and let U be any subset of V, whose elements are i_1, i_2, \ldots, i_v . And write

$$a_U = a_{i_1} + a_{i_2} + \cdots + a_{i_\nu}.$$

$$a_{U_1} \cap a_{U_2} = (0) \quad \text{when} \quad U_1 U_2 = 0.$$

Then

And when
$$V$$
 is a sum of mutually disjoint sets, i. e.

⁽¹⁾ B. L. van der Waerden [1], 156-161. The numbers in square brackets refer to the list given at the end of this paper.

⁽²⁾ J. v. Neumann [5], 4.