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In order to remove difficulties in the treatment of continuous
spectrum I have introduced two kinds of orthogonal systems in Hilbert
space, viz. the orthogonal system of closed linear manifolds {IMMy}, and
the orthogonal system of elements {q(U)}, which both have set indices
U® 1In the present paper I investigate the structures of these ortho-
gonal systems in terms of the lattice theory.

If we consider the manifold implication as the inclusion in the
definition of lattice, {My} is a complemented distributive lattice. And
in {My} the manifold calculations obey the same laws as in the set
calculations ; for example,
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Let f and g be any elements in , when (f, 9)=I|fl?, we write, as
v. Sz. Nagy,® f<g. If we use this “ <" as the inclusion in the
lattice theory, then {q(U)} is a complemented distributive lattice. And
if we denote the meet and join of q(U),q(U") by q(U)-q(U") and
qU )+q(U’) respectively, we have the following relations similar to
the set calculations :
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