Logical Structures of Orthogonal Systems in Hilbert Space.

Fumitomo MAEDA.

(Received Sept. 20, 1937.)

In order to remove difficulties in the treatment of continuous spectrum I have introduced two kinds of orthogonal systems in Hilbert space, viz. the orthogonal system of closed linear manifolds $\{\mathfrak{M}_U\}$, and the orthogonal system of elements $\{\mathfrak{q}(U)\}$, which both have set indices $U^{(1)}$. In the present paper I investigate the structures of these orthogonal systems in terms of the lattice theory.

If we consider the manifold implication as the inclusion in the definition of lattice, $\{\mathfrak{M}_U\}$ is a complemented distributive lattice. And in $\{\mathfrak{M}_U\}$ the manifold calculations obey the same laws as in the set calculations; for example,

$$\mathfrak{M}_{U} \geq \mathfrak{M}_{U'} \quad \text{when} \quad U \geq U',$$
$$\mathfrak{M}_{U} \mathfrak{M}_{U'} = \mathfrak{M}_{UU'}, \quad \mathfrak{M}_{U} \oplus \mathfrak{M}_{U'} = \mathfrak{M}_{U+U'}.$$

Let f and g be any elements in \mathfrak{H} , when $(\mathfrak{f}, \mathfrak{g}) = \|\mathfrak{f}\|^2$, we write, as v. Sz. Nagy,⁽²⁾ $\mathfrak{f} < \mathfrak{g}$. If we use this "<" as the inclusion in the lattice theory, then $\{\mathfrak{q}(U)\}$ is a complemented distributive lattice. And if we denote the meet and join of $\mathfrak{q}(U)$, $\mathfrak{q}(U')$ by $\mathfrak{q}(U) \cdot \mathfrak{q}(U')$ and $\mathfrak{q}(U) + \mathfrak{q}(U')$ respectively, we have the following relations similar to the set calculations:

q(U) > q(U') when $U \ge U'$,

⁽¹⁾ F. Maeda, this Journal, 4 (1934), 57–91; 6 (1936), 115–137; 7 (1937), 103–114, 191–213.

⁽²⁾ B. v. Sz. Nagy, "Über die Gesamtheit der characteristischen Funktionen im Hilbertischen Funktionenraum", Acta Szeged, 8 (1937), 167. When $\{q(U)\}$ is complete in \mathfrak{F} , q(U) is represented by $\sigma(EU)$, $\sigma(U)$ being $\|q(U)\|^2$. Since $\sigma(EU)$ is the integral of the characteristic function of U with respect to $\sigma(E)$, the conditions obtained by Nagy are nothing but the condition for a system of elements to be an orthogonal system of the form $\{q(U)\}$, But on the lattice theory Nagy's conditions cannot be used.