Spin Transformations. I.

By
Minoru Urabe.
(Received July, 10, 1941.)

§ 1. Introduction.

Any 4-4 matrices γ_{i} which satisfy the relations

$$
\begin{equation*}
\gamma_{\left(i \gamma_{j)}\right.}=g_{i j} I \quad i, j=1,2,3,4 \tag{1.1}
\end{equation*}
$$

for any given fundamental tensor $g_{i j}$ in a 4-dimensional Riemannian space are given as follows ${ }^{(1)}$:

$$
\begin{equation*}
\gamma_{i}=S^{-1} h_{i}^{r} \hat{\gamma}_{r} S \tag{1.2}
\end{equation*}
$$

where S is any 4-4 matrix, $\dot{\gamma}_{i}$ are any 4-4 matrices satisfying $\dot{\gamma}_{\left(i i_{j}\right.}^{\circ}=\delta_{i j} I$, and h_{j}^{i} satisfy the following relations:

$$
\begin{equation*}
\sum_{r=1}^{4} h_{i}^{r} h_{j}^{r}=g_{i j}, \tag{1.3}
\end{equation*}
$$

i. e. arbitrary γ_{i} are given by $H=\left\|h_{i j}\right\|$ (i indicate the rows and j the columns) and a spin matrix S. Now let us consider the space Γ_{4} consisting of all $\gamma_{i}\left(=h_{i}^{n} \stackrel{\circ}{r}_{r}\right)$ where $\dot{\gamma}_{r}$ are fixed and \dot{h}_{j}^{i} may take all the values satisfying relations (1.3). An element γ_{i} of Γ_{4} evidently satisfies (1.1). Further, let us consider the spin transformation S of the elements r_{i} 's of Γ_{4}, such that ' $r_{i}=S^{-1} r_{i} S$. The set of all such S we write \mathfrak{S}; then, clearly, \mathfrak{S} makes a group. So for any r_{i} and ' γ_{i} satisfying (1.1), there exists S such that transitive group leaving Γ_{4} invariant. There now arises the problem of determining group \subseteq.

If any two elements γ_{i} and ' γ_{i} of Γ_{4} be written as follows:

$$
\gamma_{i}=h_{i}^{r o} i_{r}^{\prime} \quad \text { and } \quad \gamma_{i}=k_{i}^{r} \gamma_{r},
$$

then, from (1.3), we have $H^{*} H=K^{*} K=G$, where $H \equiv\left\|h_{j}^{i}\right\|, K=\left\|k_{j}^{i}\right\|$, and $G=\left\|g_{i j}\right\|$, and the asterisk denotes the transposed matrix. If we put $H K^{-1} \equiv A$, we have $A^{*} A=I$, i.e. A is an orthogonal matrix. Then we say that γ_{i} and ' γ_{i} have the same or opposite orientations, according as the orthogonal matrix A is proper or improper. Specially, if we take $\delta_{i j}$ for
(1) Pauli, Ann. d. Physik. 18 (1933).

Newman, Jour. London Math. Soc. 7 (1932), p. 93.

