Spin Transformations. I.

By

Minoru URABE.

(Received July, 10, 1941.)

§ 1. Introduction.

Any 4-4 matrices γ_i which satisfy the relations

$$\gamma_{(i}\gamma_{j)} = g_{ij}I \qquad i, j = 1, 2, 3, 4$$
 (1.1)

for any given fundamental tensor g_{ij} in a 4-dimensional Riemannian space are given as follows⁽¹⁾:

$$\gamma_i = S^{-1} h_i^r \mathring{\gamma}_r S , \qquad (1.2)$$

where S is any 4-4 matrix, \mathring{r}_i are any 4-4 matrices satisfying $\mathring{r}_{(i}\mathring{r}_{j)} = \delta_{ij}I$, and h_j^i satisfy the following relations:

$$\sum_{r=1}^{4} h_i^r h_j^r = g_{ij} , \qquad (1.3)$$

i.e. arbitrary γ_i are given by $H = ||h_{ij}||$ (*i* indicate the rows and *j* the columns) and a spin matrix *S*. Now let us consider the space Γ_4 consisting of all γ_i ($=h_i^n \hat{\gamma}_r$) where $\hat{\gamma}_r$ are fixed and h_j^i may take all the values satisfying relations (1.3). An element γ_i of Γ_4 evidently satisfies (1.1). Further, let us consider the spin transformation *S* of the elements γ_i 's of Γ_4 , such that $\gamma_i = S^{-1} \gamma_i S$. The set of all such *S* we write \mathfrak{S} ; then, clearly, \mathfrak{S} makes a group. So for any γ_i and γ_i satisfying (1.1), there exists *S* such that transitive group leaving Γ_4 invariant. There now arises the problem of determining group \mathfrak{S} .

If any two elements γ_i and γ_i of Γ_4 be written as follows:

$$\gamma_i = h_i^r \mathring{\gamma}_r$$
 and $\gamma_i = k_i^r \mathring{\gamma}_r$,

then, from (1.3), we have $H^*H = K^*K = G$, where $H = ||h_j^i||$, $K = ||k_j^i||$, and $G = ||g_{ij}||$, and the asterisk denotes the transposed matrix. If we put $HK^{-1} \equiv A$, we have $A^*A = I$, i.e. A is an orthogonal matrix. Then we say that γ_i and γ_i have the same or opposite orientations, according as the orthogonal matrix A is proper or improper. Specially, if we take δ_{ij} for

(1) Pauli, Ann. d. Physik. 18 (1933).

Newman, Jour. London Math. Soc. 7 (1932), p. 93.