Mathematical Foundation of Wave Geometry. II. A Generalization of Clifford Number.

By

Kakutaro MORINAGA.

(Received July 10, 1941.)

Summary.

In this continuation of an earlier paper⁽¹⁾ we shall investigate some properties of the iteration system.

In §6, it will be proved that if an iteration system \mathfrak{B} is *M*-divisible, there exists the unit element of \mathfrak{B} , and conversely; and the condition of *h*'s being the unit element of \mathfrak{B} is $h(M) \cdot M = M$.

In §7, we shall investigate the relations between the numbers q and p (the degree and the order) of linearly independent basic elements of \mathfrak{B} with the reference fields of $\{\mathfrak{N}, M\}$ and \mathfrak{N} respectively, and the closed dimension n of \mathfrak{B} .

In \$8, we shall obtain the matrix-representation of \mathfrak{B} , and prove that the iteration systems are essentially classified in the two types.

In § 9, we shall investigate the relations between any two sets of the central bases a_i and a'_i $(i=1,\ldots,n)$ in an iteration system.

§ 6. Unit element.

We put forward the following two definitions.

Definition: When we can always conclude that, for any element $\beta_0 \in \mathfrak{B}$, $\beta_0 = 0$ from $M\beta_0 = 0$, \mathfrak{B} is called *M*-divisible.

Definition: h is called the *unit element* of \mathfrak{B} when the element h of \mathfrak{B} satisfies the following relations for any element β of \mathfrak{B} ;

$$h\beta = \beta$$
, $\beta h = \beta$.

Then we have the following theorems concerning the unit element of \mathfrak{B} .

Theorem 21. When \mathfrak{B} is M-divisible, the necessary and sufficient condition for h's being the unit element of \mathfrak{B} is that

$$Mh = M$$

and as the definition for the unit element one of the relations $h\beta = \beta$ and $\beta h = \beta$ may be omitted.

(1) K. Morinaga, this Journal, 10 (1940), 215 (W.G. No. 40.) (We refer to this as I.)