Compact Metric Boolean Algebras and Vector Lattices.

By

Tôzirô Ogasawara.

(Received June 30, 1941.)

The main object of this paper is to show that a metric vector lattice⁽¹⁾ with a unit element whose any interval is compact is a sequential space. In §1 we show that any compact metric Boolean algebra is complete and atomic. In §2 we concern ourselves with an analogous problem for a metric complemented modular lattice. In §3 we does with the case⁽²⁾: An Archimedean *n*-dimensional vector lattice is isomorphic with R^n . In §4 the main problem, and in §5 its special cases, are treated.

Here I express my hearty thanks to Prof. F. Maeda for his kind guidance.

§ 1. Let A be any metric Boolean algebra of elements x, y, z, \ldots with a sharply positive functional m[x], where m[1]=1, m[0]=0, and with the metric $\partial(x, y)$ introduced by m[x].

THEOREM 1. In any metric Boolean algebra A the following two conditions are equivalent:

(1) A is compact.

(2) A is complete, continuous, and atomic with an enumerable basis.

PROOF. Assume that (1) holds good. For any increasing sequence $\{x_n\}$, there exists a partial sequence $\{x_{n'}\}$ converging to some x. By the inequality

$$\delta(x \lor z, y \lor z) + \delta(x \land z, y \land z) \leq \delta(x, y)$$
,⁽³⁾

we see that the order is preserved by the metric convergence, so that $x = Vx_n$ and $m[x_n] \to m[x]$. From this we infer that A is complete and continuous.⁽⁴⁾ If A is not atomic, then there exists an element containing no atomic element, which we may assume to be 1. Consider an ε -net $a_i, i=1, 2, \ldots, m$ for any given positive number ε . We may assume that a_i is the join of some subset of an independent system $x_n, n=1, 2, \ldots, p$, where $\forall x_n=1$. Let $y_n \leq x_n$ be an element such that $m[y_n] = \frac{1}{2}m[x_n]$, the existence of which will be proved easily. Put $y = \forall y_n$, then $\delta(y, a_i) = \frac{1}{2}$.

⁽¹⁾ For notations and terminologies see G. Birkhoff, Lattise Theory, (1940).

⁽²⁾ G. Birkhoff, loc. cit., 120.

⁽³⁾ G. Birkhoff, loc. cit., 42.

⁽⁴⁾ G. Birkhoff, loc. cit., 43-44.