

Relative Dimensionality in Operator Rings.

By

Fumitomo MAEDA.

(Received Jan. 15, 1941.)

In a Hilbert space, let **M** be a ring containing 1. We write $\mathfrak{M} \sim \mathfrak{N}$ (..., **M**) if a partially isometric operator $U \in \mathbf{M}$ exists, the initial and final sets of which are \mathfrak{M} and \mathfrak{N} respectively. When **M** is a factor, F. J. Murray and J. v. Neumann have proved the following comparability theorem: "If $\mathfrak{M}, \mathfrak{N} \gamma \mathbf{M}$, then either $\mathfrak{M} \sim \mathfrak{N} \subset \mathfrak{N}$ or $\mathfrak{N} \sim \mathfrak{M} \subset \mathfrak{M}$."

In the present paper I shall investigate the case where \mathbf{M} is not a factor, and obtain the same results (cf. Theorems I–IV below) as those in reducible continuous geometry.

From this fact we may conjecture that with respect to dimensionality there is a lattice theory which contains both the continuous geometry and the operator rings.

1. In a Hilbert space \mathfrak{H} , let **M** be a ring containing 1. Denote by **E** the set of all projections E belonging to **M**. When EF = FE = E, we write $E \leq F$. Let $\mathfrak{M}, \mathfrak{N}$ be the ranges of E, F respectively, then $E \leq F$ if and only if $\mathfrak{M} \subset \mathfrak{N}$. Hence **E** is a partially ordered system with the order \leq . Since $E = P_{\mathfrak{M}} \in \mathbf{E}$ if and only if $U\mathfrak{M} = \mathfrak{M}$ for every unitary $U \in \mathbf{M}',^{(2)}$ it is evident that E is a lattice, where the join $P_{\mathfrak{M}} \vee P_{\mathfrak{N}}$ is the projection whose range is $[\mathfrak{M}, \mathfrak{N}]$, and the meet $P_{\mathfrak{M}} \wedge P_{\mathfrak{N}}$ is the projection whose range is $\mathfrak{M} \cdot \mathfrak{N}$. $E \vee F = E + F$ if and only if EF = 0 or FE = 0, and in this case $E \perp F.^{(3)}$ $E \wedge F = EF$ if and only if, EF = FE. 0 and 1 are the zero and unit elements of **E**. If $E \leq F$, then F - E belongs to **E**. And

$$E \lor (F-E) = F$$
, $E \land (F-E) = 0$.

Hence E is a complemented lattice. But E is not necessarily modular. For example, when M is the set of all bounded operators in \mathfrak{H} , then E is not modular.⁽⁴⁾

We write $\mathfrak{M} \sim \mathfrak{N}$ (..., **M**), and for $E = P_{\mathfrak{M}}$, $F = P_{\mathfrak{N}}$, $E \sim F$ (..., **M**), if a partially isometric $U \in \mathbf{M}$ exists, the initial and final sets of which are \mathfrak{M}

(1) Murray and v. Neumann [1], Lemma 6.2.3. The numbers in square brackets refer to the list given at the end of this paper.

(3) $E \perp F$ means that the ranges of E and F are orthogonal.

(4) Cf. G. Birkhoff and J. v. Neumann, *The Logic of Quantum Mechanics*, Annals of Math. **37** (1936), 832.

⁽²⁾ Murray and v. Neumann [1], 141.