Ideals in a Boolean Algebra with Transfinite Chain Condition.

Fumitomo MAEDA.

(Received Nov. 6, 1939.)

Let L be a generalized \aleph -Boolean algebra, and Ω be an ordinal number. A subset $S=(a_{\alpha}; \alpha < \Omega)$ of L is called an ascending or descending system according as $a_{\alpha} < a_{\beta}$ or $a_{\alpha} > a_{\beta}$ for all $\alpha < \beta < \Omega$. If, for every ascending and descending system S, the power of S is $< \aleph$, then we say that L satisfies the \aleph -chain condition. Let α be an \aleph -ideal in L, and L/α denote the set of all equivalence classes with respect to α . When L/α satisfies the \aleph -chain condition, we say that L satisfies the \aleph -chain condition relative to α , and α is called a basic \aleph -ideal of the \aleph -chain condition. I shall prove that L satisfies the \aleph -chain condition relative to α if, and only if, L satisfies the following condition:

For every $T \subset L$ such that (i) $a \in T$ implies $a \notin a$, (ii) $a, b \in T$, $a \neq b$ implies $a \wedge b \in a$, the power of T is $< \aleph$.

I find also that class \mathfrak{P}_{n} of all basic \aleph -ideals of the \aleph -chain condition in L is a generalized \aleph -Boolean algebra, and class \mathfrak{P}_{n}^{*} of all dual \aleph -ideals in \mathfrak{P}_{n} is a continuous Boolean algebra.

Next I apply this result to class \mathfrak{F}_{\aleph_1} of all measure functions defined in an \aleph_1 -Boolean algebra L. Let \mathfrak{a}_{ϕ} be the class of all a such that $\phi(a)=0$. Then \mathfrak{a}_{ϕ} is a basic \aleph_1 -ideal of the \aleph_1 -chain condition in L. I shall prove that class \mathfrak{Q}_{\aleph_1} of all $\mathfrak{a}_{\phi}(\phi \in \mathfrak{F}_{\aleph_1})$ is a dual \aleph_1 -ideal in \mathfrak{P}_{\aleph_1} , and therefore \mathfrak{Q}_{\aleph_1} is a generalized \aleph_1 -Boolean algebra, and class $\Psi_{\aleph_1}^*$ of all dual \aleph_1 -ideals in \mathfrak{Q}_{\aleph_1} is a continuous Boolean algebra. We shall write $\phi < \phi$, when $\phi(a)$ is absolutely continuous with respect to $\phi(a)$, that is, $\phi(a)=0$ for all a such that $\phi(a)=0$. Then $\phi < \phi$ when, and only when, $\mathfrak{a}_{\phi} \supset \mathfrak{a}_{\phi}$. Hence \mathfrak{F}_{\aleph_1} is dualisomorphic to \mathfrak{Q}_{\aleph_1} . Therefore \mathfrak{F}_{\aleph_1} is a generalized \aleph_1 -Boolean algebra, and the class Ψ_{\aleph_1} of all \aleph_1 -ideals in \mathfrak{F}_{\aleph_1} is a continuous Boolean algebra.

Lastly I shall investigate the application to the spectral theory of the complete complex Euclidean space \mathfrak{H} . If a family of projections E(a) is defined for all a in an \aleph_1 -Boolean algebra L, such that

- (a) E(a)E(b)=0 when $a \wedge b=0$,
- (β) $E(a) = E(a_1) + E(a_2) + \cdots + E(a_i) + \cdots$ when $a = \sum \oplus a_i$,
- (γ) E(1)=1;

then we say that E(a) is a resolution of identity in the generalized sense. Let a_f be the class of all a such that E(a)f=0. Then a_f is a basic \aleph_1 -ideal