DIRECT AND SUBDIRECT FACTORIZATIONS OF LATTICES

By

Fumitomo MAEDA

(Received Dec. 13, 1950)

Let a lattice L be a product¹⁾ $L_1...L_n$ of n lattices L_i (i=1,...,n). If L has the null element 0 and the unit element 1, then L_i has the null element 0_i and the unit element 1_i . The element z_i which is expressed in $L_1...L_n$ as $[0_1, ..., 0_{i-1}, 1_i, 0_{i+1}, ..., 0_n]$ is an element of the center of $L^{2)}$. The center of L is a Boolean algebra, and using this center we can easily solve the factorization problem of lattices³⁾. But for the lattices L without 0 or 1, the centers of L do not exist. Hence for the factorization problem of such lattices, we must seek Boolean algebras. From this point of view, I investigated the direct factorizations and the subdirect factorizations of lattices without the assumption that 0 and 1 exist.

§ I. Direct Factorizations of Lattices.

By a direct factorization of a lattice L we mean the system of lattices L_i (i=1, ..., u), when L is isomorphic to the product Π (L_i ; i=1, ..., n) $=L_1...L_n$. Let $\Theta(L)$ denote the set of all congruence relations on L. Funayama and Nakayama proved that $\Theta(L)$ is an upper continuous, distributive lattice by defining $\theta \leq \phi$ if and only if $x \equiv y(\theta)$ implies $x \equiv y(\phi)^{(1)}$. Two congruence relations θ and ϕ are called *permutable* if $a \equiv x(\theta)$ and $x \equiv b(\phi)$ for some x imply $a \equiv y(\phi)$ and $y \equiv b(\theta)$ for some y. The set of all congruence relations which are permutable with θ for all $\theta \in \Theta(L)$ is denoted by $\Gamma(L)$. And the center of $\Theta(L)$ is denoted by $\Theta_z(L)$. Since $\Theta(L)$ is distributive, $\theta \in \Theta_z(L)$ if and only if θ has its complement θ' . If $L \simeq L_1 L_1$, the mapping $[x_1, x_2] \rightarrow x_1$ is a homomorphism of L onto L_1 and hence generates a congruence relation θ_1 , which we call a decomposition congruence relation. If we denote by $\Theta_0(L)$ the set of all decomposition

¹⁾ Cardinal product in Birkhoff's [1, p.25] sense. The numbers in square brackets refer to the list at the end of this paper.

²⁾ Center in Birkhoff's [1, p. 27] sense.

³⁾ Cf. Birkhoff [1] 26.

⁴⁾ Cf. Birkhoff [1] 24. A complete lattice L is called upper continuous when $a_0 \uparrow a$ implies $a_0 \land b \uparrow a \land b$. When L is distributive, this is equivalent to $V(a; a \in S) \land b = V(a \land x; a \in S)$ for all $S \leq L$. We use also 0 and 1 for the zero element and the unit element of $\Theta(L)$ respectively.