DIRECT AND SUBDIRECT FACTORIZATIONS OF LATTICES

By
Fumitomo MAEDA
(Received Dec. 13, 1950)

Let a lattice L be a product ${ }^{1)} L_{1} \ldots L_{n}$ of n lattices $L_{i}(i=1, \ldots, n)$. If L has the null element 0 and the unit element 1 , then L_{i} has the null element 0_{i} and the unit element 1_{i}. The element z_{i} which is expressed in $L_{1} \ldots L_{n}$ as $\left[0_{1}, \ldots, 0_{i-1}, 1_{i}, 0_{i+1}, \ldots, 0_{k}\right]$ is an element of the center of $L^{2)}$. The center of L is a Boolean algebra, and using this center we can easily solve the factorization problem of lattices ${ }^{3}$. But for the lattices L without 0 or 1 , the centers of L do not exist. Hence for the factorization problem of such lattices, we must seek Boolean algebras. From this point of view, I investigated the direct factorizations and the subdirect factorizations of lattices without the assumption that 0 and 1 exist.

§ I. Direct Factorizations of Lattices.

By a direct factorization of a lattice L we mean the system of lattices $L_{i}(i=1, \ldots, u)$, when L is isomorphic to the product $\Pi\left(L_{i} ; i=1, \ldots, n\right)$ $=L_{1} \ldots L_{n}$. Let $\Theta(L)$ denote the set of all congruence relations on L. Funayama and Nakayama proved that $\Theta(L)$ is an upper continuous, distributive lattice by defining $\theta \leqq \phi$ if and only if $x \equiv y(\theta)$ implies $x \equiv y(\phi)^{4}$. Two congruence relations θ and ϕ are called permutable if $a \equiv x(\theta)$ and $x \equiv b(\phi)$ for some x imply $a \equiv y(\phi)$ and $y \equiv b(\theta)$ for some y. The set of all congruence relations which are permutable with θ for all $\theta \in \Theta(L)$ is denoted by $\Gamma(L)$. And the center of $\Theta(L)$ is denoted by $\Theta_{z}(L)$. Since $\Theta(L)$ is distributive, $\theta \in \Theta_{z}(L)$ if and only if θ has its complement θ^{\prime}. If $L \cong L_{1} L_{1}$, the mapping $\left[x_{1}, x_{2}\right] \rightarrow x_{1}$ is a homomorphism of L onto L_{1} and hence generates a congruence relation θ_{1}, which we call a decomposition congruence relation. If we denote by $\Theta_{0}(L)$ the set of all decomposition

[^0]
[^0]: 1) Cardinal product in 'Birkhoff's [1, p. 25] sense. The numbers in square brackets refer to the list at the end of this paper.
 2) Center in Birkhoff's [1, p. 27] sense.
 3) Cf. Birkhoff [1] 26.
 4) Cf. Birkhoff [1] 24. A complete lattice L is called upper continuous when $a_{\delta} \uparrow a$ implies $a_{\delta} \cap b \uparrow a \frown b$. When L is distributive, this is equivalent to $V(a ; a \in S) \cap b=V(a \cap x ; a \in S)$ for all $S \leqq L$. We use also 0 and 1 for the zero element and the unit element of $\Theta(L)$ respectively.
