On Stress-functions in General Coordinates.

By

Kakutarô MORINAGA and Takayuki NÔNO

(Received May 30, 1950)

§ 1. Stress equations of motion and Hooke's law in tensor form.

In this paper we shall consider the stress-functions in the theory of elasticity. We begin rewriting the stress equations of motion in tensor forms. We introduce a general coordinates x^i into the three dimensional Euclidean space, in which the metric is given by

$$ds^2 = g_{ij} dx^i dx^j, (1.1)$$

where we sum up for *i*, j=1, 2, 3; in the following we shall use the familiar notations in tensor analysis.¹⁾

The equations of motion for the body in motion with acceleration f^i under body force T^i and force $T^i_{(\varphi)}$ applied over any surface $\varphi = const.$ in the body are

$$\int \rho f^i d\tau = \int \rho T^i d\tau + \int T^i_{(\varphi)} d\sigma^{(2)}$$
(1.2)

and

$$\int \rho v^{(i} f^{j)} d\tau = \int \rho v^{(i} T^{j)} d\tau + \int v^{(i} T^{j)}_{(\varphi)} d\sigma, \qquad (1.3)$$

where v^i is any solution of $\nabla_i v^j = \delta_i^j$ (Kronecker's delta),³ ∇_i denotes the covariant derivative with respect to g_{ij} . Since (1.2) and (1.3) are tensor equations, and in a Cartesian coordinates coincide with the ordinary equations of motion, where v^i becomes (x+a, y+b, z+c), these are the equations of motion in the general coordinates.

Let T^{ij} be the force applied over the surfaces $x^i = const.$, then by projecting the force $T^i_{(\varphi)}$ on the normal line of the surface $\varphi = const.$, we get

$$T^{i}_{(\varphi)} = ((\nabla_{h} \varphi) / \sqrt{g^{kj} \nabla_{k} \varphi \nabla_{j} \varphi}) T^{hi}, \qquad (1.4)$$

¹⁾ As for tensor notations, see L. P. Eisenhart: Riemannian Geometry (1926).

²⁾ $\int ... d\tau$ and $\int ... d\sigma$ denote the integrals with respect to the volumes and surfaces in the unstrained state respectively, and so in the following.

³⁾ This system of equations is always integrable, since this satisfies the integrability conditions $\nabla_{(k} \delta_{j}^{j} = 0$.