On the Logarithmic Functions of Matrices. II. (On Some Properties of Local Lie Groups)

By

Kakutarô MORINAGA and Takayuki NÔNO.

(Received May 30, 1950)

§ 1. Logarithmic functions of real matrices.

In the preceding paper¹⁾ we have obtained the following results about the logarithmic functions of complex matrices. We consider the complex matrices of order n. Let \mathfrak{M} be the totality of regular matrices, \mathfrak{M} the totality of regular matrices whose all characteristic values are not negative, $\mathfrak{A}_{(a)}$ the totality of matrices whose different characteristic values μ_i have the imaginary part $I(\mu_i)$ such that $a-\pi \leq I(\mu_i)$ $\langle a+\pi$ (a is any real number), $\mathfrak{A}_{(a)}$ the totality of matrices such that $a-\pi < I(\mu_i) < a+\pi$ (a is any real number), and \mathfrak{A}^* the totality of matrices such that $\mu_i \equiv \mu_j$ (mod. $2\pi \sqrt{-1}$) for all different characteristic values μ_i .²⁾ Then we have the following properties:

(1) There exisits in $\mathfrak{A}_{(a)}$ one and only one matrix such that exp A = M for a given matrix $M \in \mathfrak{M}$.

(2) The exponential mapping $A \rightarrow exp A = M$ is a topological mapping from $\widetilde{\mathfrak{A}}_{(a)}$ onto $\widetilde{\mathfrak{M}}$

(3) Let A, $B \in \mathfrak{A}^*$. AB = BA if and only if exp A exp B = exp B exp A.

(4) Let $A \in \mathfrak{A}^*$. $A = \begin{pmatrix} UW \\ OV \end{pmatrix}$ if and only if $exp A = \begin{pmatrix} HL \\ OK \end{pmatrix}$, where U and V are the matrices of the same order as H and K respectively.

In this section we shal consider the logarithmic functions of real matrices. We denote by \mathfrak{M}_{real} , $\mathfrak{\widetilde{M}}_{real}$, $\mathfrak{A}_{(0)real}$, $\mathfrak{\widetilde{A}}_{(0)real}$ and \mathfrak{A}_{real}^{*} the totality of the real matrices belonging to \mathfrak{M} , $\mathfrak{\widetilde{M}}$, $\mathfrak{A}_{(0)}$, $\mathfrak{\widetilde{A}}_{(0)}$ and \mathfrak{A}_{real}^{*} respectively. Then it is obvious that the above properties (3) and (4) hold for \mathfrak{A}_{real}^{*}

Next we shall investigate the properties (1) and (2) in the case of real matrices.

2) $\mathfrak{A}^* = Log(\mathfrak{M})$ and $\mathfrak{A}^* \subset \mathfrak{A}(a)$.

K. Morinaga and T. Nôno : On the Lograrithmic Functions of Matrices I, Journal of Science of the Hiroshima University, Ser, A, Vol. 14, No. 2, 1950.