

Embedding Theorem of Continuous Regular Rings

 $\mathbf{B}_{\mathbf{y}}$

Fumitomo MAEDA.

(Received Oct. 30, 1948)

Let L be a reducible continuous geometry, and \mathcal{Q} the set of all maximal neutral ideals J in L. Kawada-Matsushima-Higuchi [1]⁽¹⁾ has proved that L is isomorphic to a sublattice of $\Pi(L/J; J \in \mathcal{Q})$, where L/J are irreducible continuous geometries. In this paper, I apply this result to a reducible continuous regular ring \Re , the set \overline{R}_{\Re} of all principal right ideals of \Re being a reducible continuous geometry. And I obtain an embedding theorem of \Re . (Cf. Theorem 3.2, below.)

§ 1. Dimension Functions of Reducible Continuous Geometries.

Let L be a continuous complemented modular lattice, i. e. a reducible continuous geometry, and Z the center of L. Then Z is a complete Boolean algebra. Denote by \mathcal{Q} the set of all maximal ideals \mathcal{F} of Z. For any $z \in Z$, let E(z) be the set of all maximal ideals which do not contain z. Using $(E(z); z \in Z)$ as an additive basis for the open sets of \mathcal{Q} , \mathcal{Q} is a totally-disconnected bicompact Hausdoff space. T. Iwamura (1) proved that for any $a \in L$, there is a continuous functions $D(a) = \partial(a, \mathcal{F})$ defined in \mathcal{Q} , which has the following properties;

- (1°) $0 \le D(a) \le 1$, D(0) = 0, D(1) = 1.
- (2°) a>0 implies D(a)>0.
- (3°) when $z \in \mathbb{Z}$, $\delta(z, \mathcal{F}) = 0$ or 1, according as $z \in \mathcal{F}$ or not.
- $(4^{\circ}) D(a \lor b) + D(a \land b) = D(a) + D(b).$
- (5°) $a \leq b$ are equivalent to $D(a) \leq D(b)$ respectively.

LEMMA 1.1, For any $a \in L$, let a real number m(a) be defined as follows:

- (a) $0 \le m(a) \le 1$, m(0) = 0, m(1) = 1,
- $(\beta) z \in Z implies m(z) = 0 or 1,$
- $(\gamma) \qquad m(a \lor b) + m(a \land b) = m(a) + m(b).$

Put $\mathfrak{F}=(z; m(z)=0, z\in Z)$, J=(a; m(a)=0). Then \mathfrak{F} is a maximal ideal in Z, and J is a maximal neutral ideal in L. And $a\in J$ when and only when $\mathfrak{F}_n(A_a,A_1)\in \mathfrak{F}$ $(n=1,2...)^{(2)}$.

Proof. Cf. Kawada-Matsushima-Higuchi [1].

THEOREM 1.1. Let J be a maximal neutral ideal in L, and \mathcal{F} a maximal ideal in Z. Then

- (1°) $f(J) = (z; z \in J, z \in Z)$ is a maximal ideal in Z,
- (2°) $J(\mathbf{F})=(a; \delta(a,\mathbf{F})=0)$ is a maximal neutral ideal in L,

⁽¹⁾ The numbers in square brackets refer to the list given at the end of this paper.

⁽²⁾ For the definition of $r_n(A_a, A_1)$ cf. v. Neumann [1] III 30.