Embedding Theorem of Continuous Regular Rings

By
Fumitomo MaEda．

（Received Oct．30，1948）

Let L be a reducible continuous geometry，and Ω the set of all maximal neutral ideals J in L ．Kawada－Matsushima－Higuchi $[1]^{(1)}$ has proved that L is isomorphic to a sublattice
－of $\Pi(L / J ; J \varepsilon \Omega)$ ，where L / J are irreducible continuous geometries．In this paper，I apply this result to a reducible continuous regular ring \Re ，the set \bar{R}_{\Re} of all principal right ideals of \Re being a reducible continuous geometry．And I obtain an embedding theorem of \Re ． （Cf．Theorem 3．2，below．）

\S 1．Dimension Functions of Reducible Continuous Geometries．

Let L be a continuous complemented modular lattice，i．e．a reducible continuous geo－ mertry，and Z the center of L ．Then Z is a complete Boolean algebra．Denote by Ω the set of all maximal ideals \mathcal{F} of Z ．For any $z \varepsilon Z$ ，let $E(z)$ be the set of all maximal ideals which do not contain z ．Using $(E(z) ; z \varepsilon Z)$ as an additive basis for the open sets of Ω, Ω is a totally－disconnected bicompact Hausdoff space．T．Iwamura 〔1〕 proved that for any $a \in L$ ，there is a continuous functions $D(a)=\delta(a, \mathscr{F})$ defined in Ω ，which has the following properties；
$\left(1^{\circ}\right)$

$$
0 \leqq \mathrm{D}(a) \leqq 1, \quad D(0)=0, \quad D(1)=1
$$

$\left(2^{\circ}\right) \quad a>0 \quad$ implies $\mathrm{D}(a)>0$ ．
$\left(3^{\circ}\right)$ when $z \varepsilon Z, \delta(z, \mathcal{F})=0$ or 1 ，according as $z \varepsilon \neq$ or not．

$$
D(a \bigvee b)+D(a \wedge b)=D(a)+D(b)
$$

$\left(5^{\circ}\right) a \leq$ are equivalent to $D(a) D(b)$ respectively．
Lemma 1－1，For any asL，let a real number $m(a)$ be defined as follows：
$(\alpha) \quad 0 \leqq m(a) \leqq 1, \quad m(0)=0, \quad m(1)=1$,
（ β ）$\quad z \varepsilon Z$ implies $m(z)=0$ or 1 ，
（ γ ）$\quad m(a \bigvee b)+m(a \wedge b)=m(a)+m(b)$ ．
Put $\mathcal{F}=(z ; m(z)=0, z \varepsilon Z), \quad J=(a ; m(a)=0)$ ．Then \mathcal{F} is a maximal ideal in Z ，and J is a maximal neutral ideal in L．And asJ when and only when $r_{n}\left(A_{a,} A_{1}\right) \leqslant \mathcal{F} \quad(n=1,2 \ldots)^{(2)}$ ．

Proof．Cef．Kawada－Matsushima－Higuchi［1］．
Theorem 1－1．Let J be a maximal neutral ideal in L ，and \mathcal{f} a maximal ideal in Z ． Then
$\left(1^{\circ}\right) \quad \mathcal{F}(J)=(z ; z \varepsilon J, z \varepsilon Z) \quad$ is a maximal ideal in Z ，
$\left(2^{\circ}\right) \quad J(\mathcal{F})=(a ; \delta(a, \mathcal{F})=0) \quad$ is a maximal neutral ideal in L ，

[^0]（2）For the definition of $r_{n}\left(A_{a}, A_{2}\right)$ cf．v．Neumann［1］III 30.

[^0]: （1）The numbers in square brackets refer to the list given at the end of this paper．

