THEORY OF THE SPHERICALLY SYMMETRIC SPACE-TIMES. V. n DIMENSIONAL SPHERICALLY SYMMETRIC SPACE-TIMES

By
Hyôitirô TAKENO
(Received Sept. 3, 1952)

In this paper we shall give an $n(\geqq 5)$ dimensional generalization of the theory of the spherically symmetric space-times developed by the present writer. ${ }^{1)}$ Almost all properties of the four dimensional S_{0} given in the previous papers also hold for the n dimensional case to within some slight modifications, but as will be seen in due course, the theory concerning the latter is simpler than the four dimensional theory in some respects owing to the condition $n-2 \geq 3$. In this paper, emphasizing the properties which do not hold for the four dimensional S_{0}, we shall give the main results.

\S 1. Definition of S_{0} and identities concerning c.s.

Definition: An $n(\geq 5)$ dimensional s.s. space-time S, is an n dimensional Riemannian space having the following properties:
(I) Its curvature tensor satisfies

$$
\begin{equation*}
K_{i j l m}=\stackrel{1}{\rho} \alpha_{[i} \alpha_{\imath l} \beta_{j 3} \beta_{m]}+\stackrel{2}{\rho} g_{[i[l} \alpha_{j]} \alpha_{m]}+\stackrel{3}{\rho} g_{[i \tau l} \beta_{j 3} \beta_{m]}+\stackrel{4}{\rho} g_{[i[l} g_{j 3 m]}, \tag{1}
\end{equation*}
$$

where $i, j, \cdots=1, \cdots, n, \alpha_{i}$ and β_{i} are mutually orthogonal unit vectors satisfying

$$
\begin{align*}
& \nabla_{i} \alpha_{j}=\sigma \alpha_{i} \beta_{j}+\kappa\left(g_{i j}-\alpha_{i} \alpha_{j}-\beta_{i} \beta_{j}\right)-\bar{\sigma} \beta_{i} \beta_{j}, \tag{2}\\
& \nabla_{i} \beta_{j}=\bar{\sigma} \beta_{i} \alpha_{j}+\bar{\kappa}\left(g_{i j}-\alpha_{i} \alpha_{j}-\beta_{i} \beta_{j}\right)-\sigma \alpha_{i} \alpha_{j}, \tag{3}
\end{align*}
$$

and $\stackrel{a}{\rho} ; \sigma, \bar{\sigma} ; \kappa, \bar{\kappa}$ are scalars determined from these equations.
(II) One of the five scalars ρ, \cdots, ρ and K is such that its gradient vector is a linear combination of α_{i} and β_{i}.

$$
\begin{equation*}
\stackrel{4}{\rho}+2\left(\kappa^{2}+\bar{\kappa}^{2}\right) \neq 0 . \tag{III}
\end{equation*}
$$

(IV) Moreover for the sake of simplicity and symmetry, we shall assume that the fundamental form is positive definite and $\alpha_{s} \alpha^{s}=\beta_{s} \beta^{s}=1$.

Corresponding theory for the case of $g_{i j}$ of the type ($-\cdots+$) and $-\alpha_{s} \alpha^{s}=\beta_{s} \beta^{s}=1$ is obtained by making some slight modifications. Through-

